IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8091-d1301259.html
   My bibliography  Save this article

Comparison of Different Mechanical Pretreatment Methods for the Anaerobic Digestion of Landscape Management Grass

Author

Listed:
  • René Heller

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Christina Brandhorst

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Benedikt Hülsemann

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Andreas Lemmer

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Hans Oechsner

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

Abstract

The aim of this study was to use landscape grass from species-rich orchards for biogas production, thus preserving these very valuable areas for future generations. Since these grass clippings have high lignocellulose content, the substrate has to be pretreated before being fed into the biogas digester. In this study, three different mechanical treatment processes (cross-flow grinder, ball mill and a mounted mower) were investigated and compared with untreated grass clippings. Chemical composition, specific methane yield, degradation kinetics and microscopic images were analyzed. In order to derive recommendations, the harvesting and pretreatment processes were examined in terms of energy demand, additional methane yield, and suitability of the substrate for use in biogas plants, taking into account conservation aspects. Within the pretreatment process, ball milling leads to the highest significant increase in specific methane yield of up to 5.8% and the fastest gas formation kinetics (lag time λ BM : 0.01 ± 0.0 d; duration to reach half of total gas production ½M(x) BM : 5.4 ± 0.2 d) compared to the untreated variant (λ UT : 1.02 ± 0.2 d; ½M(x) UT : 6.5 ± 0.2 d). A comparison of the energy required for the mechanical disintegration of the substrates with the increased yield of methane during the digestion process shows that the mechanical processing of these substrates appears to be useful. A positive energy balance was achieved for the cross-flow grinder (12.3 kWh t VS −1 ) and the ball mill (21.4 kWh t VS −1 ), while the Amazone Grasshopper left a negative balance (−18.3 kWh t VS −1 ), requiring more energy for substrate pretreatment than was generated as methane surplus. In summary, the pretreatment of landscape management grass is a suitable approach for utilizing agricultural residues efficiently in a biogas plant and thus contributing to sustainable energy production.

Suggested Citation

  • René Heller & Christina Brandhorst & Benedikt Hülsemann & Andreas Lemmer & Hans Oechsner, 2023. "Comparison of Different Mechanical Pretreatment Methods for the Anaerobic Digestion of Landscape Management Grass," Energies, MDPI, vol. 16(24), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8091-:d:1301259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyer, A.K.P. & Raju, C.S. & Kucheryavskiy, S. & Holm-Nielsen, J.B., 2015. "The energy balance of utilising meadow grass in Danish biogas production," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 265-275.
    2. M.O.L. Yusuf & A. Debora & D.E. Ogheneruona, 2011. "Ambient temperature kinetic assessment of biogas production from co-digestion of horse and cow dung," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 57(3), pages 97-104.
    3. Tsapekos, P. & Kougias, P.G. & Treu, L. & Campanaro, S. & Angelidaki, I., 2017. "Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production," Applied Energy, Elsevier, vol. 185(P1), pages 126-135.
    4. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2023. "Advancements in Giant Reed ( Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    2. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    3. Marco De Sanctis & Valerio Guido Altieri & Emanuele Barca & Luigi di Bitonto & Francesco Tedeschi & Claudio Di Iaconi, 2024. "Comparison Among Thermal Pre-Treatments’ Effectiveness in Increasing Anaerobic Digestibility of Organic Fraction in Municipal Solid Wastes," Energies, MDPI, vol. 17(24), pages 1-13, December.
    4. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Luz Breton-Deval & Ilse Salinas-Peralta & Jaime Santiago Alarcón Aguirre & Belkis Sulbarán-Rangel & Kelly Joel Gurubel Tun, 2020. "Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob," Energies, MDPI, vol. 14(1), pages 1-14, December.
    6. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    8. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    9. Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.
    10. Tess Herman & Emily Nungesser & Kimberley E. Miller & Sarah C. Davis, 2022. "Comparative Fuel Yield from Anaerobic Digestion of Emerging Waste in Food and Brewery Systems," Energies, MDPI, vol. 15(4), pages 1-13, February.
    11. Chettaphong Phuttaro & Alissara Reungsang & Piyarat Boonsawang & Sumate Chaiprapat, 2019. "Integrative Effects of Sonication and Particle Size on Biomethanation of Tropical Grass Pennisetum purpureum Using Superior Diverse Inocula Cultures," Energies, MDPI, vol. 12(22), pages 1-16, November.
    12. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    13. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    14. Ma, Shuaishuai & Wang, Hongliang & Li, Longrui & Gu, Xiaohui & Zhu, Wanbin, 2021. "Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Yang, Ziyi & Sun, Hangyu & Kurbonova, Malikakhon & Zhou, Ling & Arhin, Samuel Gyebi & Papadakis, Vagelis G. & Goula, Maria A. & Liu, Guangqing & Zhang, Yi & Wang, Wen, 2022. "Simultaneous supplementation of magnetite and polyurethane foam carrier can reach a Pareto-optimal point to alleviate ammonia inhibition during anaerobic digestion," Renewable Energy, Elsevier, vol. 189(C), pages 104-116.
    16. Oliva, A. & Tan, L.C. & Papirio, S. & Esposito, G. & Lens, P.N.L., 2021. "Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials," Renewable Energy, Elsevier, vol. 169(C), pages 1000-1012.
    17. Zhou, Jialiang & Zhang, Yuanhui & Khoshnevisan, Benyamin & Duan, Na, 2021. "Meta-analysis of anaerobic co-digestion of livestock manure in last decade: Identification of synergistic effect and optimization synergy range," Applied Energy, Elsevier, vol. 282(PA).
    18. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    19. Giangeri, Ginevra & Tsapekos, Panagiotis & Gaspari, Maria & Ghofrani-Isfahani, Parisa & Treu, Laura & Kougias, Panagiotis & Campanaro, Stefano & Angelidaki, Irini, 2024. "A bioaugmentation strategy to recover methane production under sulfate-stressed conditions: Highlights on targeted sulfate-reducing bacteria and DIET-related species," Applied Energy, Elsevier, vol. 362(C).
    20. Li, Yeqing & Jing, Zhangmu & Pan, Junting & Luo, Gang & Feng, Lu & Jiang, Hao & Zhou, Hongjun & Xu, Quan & Lu, Yanjuan & Liu, Hongbin, 2022. "Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8091-:d:1301259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.