IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v160y2022ics1364032122001824.html
   My bibliography  Save this article

Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste

Author

Listed:
  • Li, Yeqing
  • Jing, Zhangmu
  • Pan, Junting
  • Luo, Gang
  • Feng, Lu
  • Jiang, Hao
  • Zhou, Hongjun
  • Xu, Quan
  • Lu, Yanjuan
  • Liu, Hongbin

Abstract

Due to the diversity of microbiota and the high complexity of their interactions that mediate biogas production, a detailed understanding of the microbiota is essential for the overall stability and performance of the anaerobic digestion (AD) process. This study evaluated the microbial taxonomy, metabolism, function, and genetic differences in 14 full-scale biogas reactors and laboratory reactors operating under various conditions in China. This is the first known study of the microbial ecology of AD at food waste (FW) at a regional scale based on multi-omics (16S rRNA gene amplicon sequencing, metagenomics, and proteomics). Temperature significantly affected the bacterial and archaeal community structure (R2 = 0.996, P = 0.001; R2 = 0.846, P < 0.002) and total inorganic carbon(TIC) slightly changed the microbial structure (R2 = 0.532, P = 0.005; R2 = 0.349, P = 0.016). The Wood-Ljungdahl coupled with hydrogenotrophic methanogenic pathways were dominant in the thermophilic reactors, where the acs, metF, cooA, mer, mch and ftr genes were 10.1-, 2.8-, 16.2-, 1.74-, 4.15-, 1.04-folds of the mesophilic reactors (P < 0.01). However, acetoclastic and methylotrophic methanogenesis was the primary pathway in the mesophilic reactors, where the ackA, pta, cdh and mta genes were 2.2-, 3.2-, 14.3-, 1.88-folds of the thermophilic group (P < 0.01). Finally, the Wilcoxon rank-sum test was applied to explain the cause of the temperature affecting AD microbial activities. The findings have deepened the understanding of the effect of temperature on AD microbial ecosystems and are expected to guide the construction and management of full-scale FW biogas plants.

Suggested Citation

  • Li, Yeqing & Jing, Zhangmu & Pan, Junting & Luo, Gang & Feng, Lu & Jiang, Hao & Zhou, Hongjun & Xu, Quan & Lu, Yanjuan & Liu, Hongbin, 2022. "Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001824
    DOI: 10.1016/j.rser.2022.112261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    2. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    2. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    3. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    4. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    5. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    8. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    9. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Vishal Ahuja & Arvind Kumar Bhatt & Balasubramani Ravindran & Yung-Hun Yang & Shashi Kant Bhatia, 2023. "A Mini-Review on Syngas Fermentation to Bio-Alcohols: Current Status and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    11. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    13. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    14. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    15. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    16. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    17. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    18. Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.
    19. Tess Herman & Emily Nungesser & Kimberley E. Miller & Sarah C. Davis, 2022. "Comparative Fuel Yield from Anaerobic Digestion of Emerging Waste in Food and Brewery Systems," Energies, MDPI, vol. 15(4), pages 1-13, February.
    20. Chettaphong Phuttaro & Alissara Reungsang & Piyarat Boonsawang & Sumate Chaiprapat, 2019. "Integrative Effects of Sonication and Particle Size on Biomethanation of Tropical Grass Pennisetum purpureum Using Superior Diverse Inocula Cultures," Energies, MDPI, vol. 12(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.