IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8037-d1299235.html
   My bibliography  Save this article

Effect of Ash from Salix viminalis on the Biomass and Heating Value of Zea mays and on the Biochemical and Physicochemical Properties of Soils

Author

Listed:
  • Edyta Boros-Lajszner

    (Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Jadwiga Wyszkowska

    (Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

Abstract

Wood ash is sometimes used as an alternative to mineral fertilizers; however, there is still a paucity of reliable data concerning its effect on plants—and on biological properties of soil. The present study aimed to determine the possible extent of soil pollution with ash from Salix viminalis that does not disturb the growth of Zea mays L., intended for energetic purposes, in order to identify how the increasing ash doses affect biochemical and physicochemical properties of soil and to finally to establish the neutralizing effects of soil additives, i.e., compost and HumiAgra preparation, on this soil pollutant. The study demonstrated that the heating value of Zea mays L. was stable and not modified by the excess content of ash from Salix viminalis in the soil. This finding points to the feasibility of Zea mays L. cultivation on soils contaminated with ash from Salix viminalis and its use in bio-power engineering. The biomass of the aboveground parts of Zea mays L. was significantly reduced after soil contamination with Salix viminalis ash dose of 20 g kg −1 d.m. soil, whereas the smaller ash doses tested (5–10 g kg −1 d.m. soil) did not impair either the growth or the development of Zea mays L. The ash inhibited activities of all analyzed soil enzymes but increased soil pH and sorption capacity. Fertilization with compost proved more effective in neutralizing the adverse effect of ash on enzymatic activity of the soil.

Suggested Citation

  • Edyta Boros-Lajszner & Jadwiga Wyszkowska & Jan Kucharski, 2023. "Effect of Ash from Salix viminalis on the Biomass and Heating Value of Zea mays and on the Biochemical and Physicochemical Properties of Soils," Energies, MDPI, vol. 16(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8037-:d:1299235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Tomasz Słowik & Paweł Krzaczek & Wiesław Piekarski, 2019. "Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process," Energies, MDPI, vol. 12(22), pages 1-20, November.
    2. P. Baldrian, 2009. "Microbial enzyme-catalyzed processes in soils and their analysis," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(9), pages 370-378.
    3. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2022. "Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil," Energies, MDPI, vol. 15(9), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Maj & Kamil Buczyński & Kamila E. Klimek & Magdalena Kapłan, 2024. "Evaluation of Growth and Energy Parameters of One-Year-Old Raspberry Shoots, Depending on the Variety," Energies, MDPI, vol. 17(13), pages 1-12, June.
    2. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    3. Martillo Aseffe, José Alfonso & Martínez González, Aldemar & Jaén, René Lesme & Silva Lora, Electo Eduardo, 2021. "The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study," Renewable Energy, Elsevier, vol. 163(C), pages 1523-1535.
    4. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Agata Borowik & Jan Kucharski, 2022. "The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    5. Edyta Boros-Lajszner & Jadwiga Wyszkowska & Jan Kucharski, 2024. "The Effect of Carpinus betulus Ash on the Maize as an Energy Crop and the Enzymatic Soil Properties," Energies, MDPI, vol. 17(12), pages 1-16, June.
    6. Elem Patricia Rocha Alves & Orlando Salcedo-Puerto & Jesús Nuncira & Samuel Emebu & Clara Mendoza-Martinez, 2023. "Renewable Energy Potential and CO 2 Performance of Main Biomasses Used in Brazil," Energies, MDPI, vol. 16(9), pages 1-59, May.
    7. Hwai Chyuan Ong & Adi Kusmayadi & Nor Aishah Saidina Amin, 2023. "Biomass Energy for Environmental Sustainability," Energies, MDPI, vol. 16(7), pages 1-3, March.
    8. Grzegorz Zając & Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Tomasz Słowik & Paweł Krzaczek & Wojciech Gołębiowski & Marcin Dębowski, 2020. "Evaluation of the Properties and Usefulness of Ashes from the Corn Grain Drying Process Biomass," Energies, MDPI, vol. 13(5), pages 1-16, March.
    9. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2024. "The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil," Energies, MDPI, vol. 17(5), pages 1-18, February.
    10. Jana Chumchalová & Martin Kubal, 2020. "Laboratory tests for aerobic bioremediation of the contaminated sites in the Czech Republic," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(5), pages 191-199.
    11. Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & Domenico, Michele Di & da Silva Filho, Valdemar Francisco & de Sena, Rennio Felix & Machado, Ricardo Antonio F, 2020. "Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 1328-1338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8037-:d:1299235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.