IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7833-d1289942.html
   My bibliography  Save this article

Comparing the Utility of Coupled Aero-Hydrodynamic Analysis Using a CFD Solver versus a Potential Flow Solver for Floating Offshore Wind Turbines

Author

Listed:
  • Mohd Atif Siddiqui

    (Semar AS, Strandveien 12, 1366 Lysaker, Norway)

  • Finn-Christian Wickmann Hanssen

    (Semar AS, Strandveien 12, 1366 Lysaker, Norway
    Department of Marine Technology, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway)

  • Marilena Greco

    (Department of Marine Technology, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
    Institute of Marine Engineering (CNR-INM), Via di Vallerano 139, 00128 Rome, Italy)

  • Eirik Anda

    (Department of Marine Technology, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway)

Abstract

There has been a great effort towards development of renewable energy systems to combat global warming with significant interest towards research and development of floating offshore wind turbines (FOWTs). With commercial projects such as Hywind Scotland, Hywind Tampen and others, there is a shift of industry attention from bottom-fixed offshore turbines to FOWTs. In this work, we focus on comparing industry standard Potential Flow (PF) methods versus Computational Fluid Dynamics (CFD) solvers for a scaled version of the IEA 15 MW turbine and associated FOWT system. The results from the two solvers are compared/validated using experimental thrust values for the fixed turbine. The motions and the thrust for the FOWT system are then compared for the two solvers along with hydrodynamic properties of the floater hull. The wake features downstream of the turbine are analyzed for the fixed and floating turbine using the CFD solver. The wake from the CFD solver is also compared with a simplified PF model. Finally, a simplified cost-benefit analysis is presented for the two solvers to compare the usefulness and utility of a CFD solver as compared to presently used industry-standard PF methods.

Suggested Citation

  • Mohd Atif Siddiqui & Finn-Christian Wickmann Hanssen & Marilena Greco & Eirik Anda, 2023. "Comparing the Utility of Coupled Aero-Hydrodynamic Analysis Using a CFD Solver versus a Potential Flow Solver for Floating Offshore Wind Turbines," Energies, MDPI, vol. 16(23), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7833-:d:1289942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole Mendoza & Amy Robertson & Alan Wright & Jason Jonkman & Lu Wang & Roger Bergua & Tri Ngo & Tuhin Das & Mohammad Odeh & Kazi Mohsin & Francesc Fabregas Flavia & Benjamin Child & Galih Bangga & M, 2022. "Verification and Validation of Model-Scale Turbine Performance and Control Strategies for the IEA Wind 15 MW Reference Wind Turbine," Energies, MDPI, vol. 15(20), pages 1-25, October.
    2. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach," Renewable Energy, Elsevier, vol. 92(C), pages 244-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    2. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    3. Lu Wang & Amy Robertson & Jason Jonkman & Yi-Hsiang Yu, 2020. "Uncertainty Assessment of CFD Investigation of the Nonlinear Difference-Frequency Wave Loads on a Semisubmersible FOWT Platform," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    4. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    5. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Yang Zhou & Qing Xiao & Yuanchuan Liu & Atilla Incecik & Christophe Peyrard & Sunwei Li & Guang Pan, 2019. "Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves," Energies, MDPI, vol. 12(18), pages 1-31, September.
    7. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    8. Deng, Sijia & Liu, Yingyi & Ning, Dezhi, 2023. "Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach," Renewable Energy, Elsevier, vol. 216(C).
    9. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    10. Zhu, Kai & Shi, Hongda & Michele, Simone & Han, Meng & Cao, Feifei, 2024. "Analytical study on dynamic performance of a hybrid system in real sea states," Energy, Elsevier, vol. 290(C).
    11. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    12. Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
    13. de Oliveira, Marielle & Puraca, Rodolfo C. & Carmo, Bruno S., 2023. "A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale," Energy, Elsevier, vol. 283(C).
    14. Shudong Leng & Yefeng Cai & Haisheng Zhao & Xin Li & Jiafei Zhao, 2024. "Study on the near Wake Aerodynamic Characteristics of Floating Offshore Wind Turbine under Combined Surge and Pitch Motion," Energies, MDPI, vol. 17(3), pages 1-16, February.
    15. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    16. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    17. Shen, Xin & Chen, Jinge & Hu, Ping & Zhu, Xiaocheng & Du, Zhaohui, 2018. "Study of the unsteady aerodynamics of floating wind turbines," Energy, Elsevier, vol. 145(C), pages 793-809.
    18. Xiaoling Liang & Zheng Li & Xingxing Han & Shifeng Fu & Weijun Zhu & Tianmei Pu & Zhenye Sun & Hua Yang & Wenzhong Shen, 2024. "Study on Aerodynamic Performance and Wake Characteristics of a Floating Offshore Wind Turbine in Wind–Wave Coupling Field," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    19. Wang, Lu & Bergua, Roger & Robertson, Amy & Wright, Alan & Zalkind, Daniel & Fowler, Matthew & Lenfest, Eben & Viselli, Anthony & Goupee, Andrew & Kimball, Richard, 2024. "Experimental investigation of advanced turbine control strategies and load-mitigation measures with a model-scale floating offshore wind turbine system," Applied Energy, Elsevier, vol. 355(C).
    20. Bai-Qiao Chen & Kun Liu & Tongqiang Yu & Ruoxuan Li, 2024. "Enhancing Reliability in Floating Offshore Wind Turbines through Digital Twin Technology: A Comprehensive Review," Energies, MDPI, vol. 17(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7833-:d:1289942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.