IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7757-d1287148.html
   My bibliography  Save this article

Comparison of Technical and Operational Conditions of Traditional and Modern Charcoal Kilns: A Case Study in Italy

Author

Listed:
  • Alessio Mencarelli

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, Legnaro, 35040 Padua, Italy)

  • Raffaele Cavalli

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, Legnaro, 35040 Padua, Italy)

  • Rosa Greco

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, Legnaro, 35040 Padua, Italy)

  • Stefano Grigolato

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, Legnaro, 35040 Padua, Italy)

Abstract

The global charcoal trade is steadily growing, with high-income countries importing significant quantities of this material from regions where its production is often associated with severe environmental issues, including forest overexploitation, illegal logging, and environmental pollution. Promoting local charcoal production in high-income countries is crucial to addressing these challenges. In this study, we have chosen to focus on the European context, specifically emphasizing Italy as a case study. Our study aimed to comprehensively compare five distinct charcoal production systems, including both traditional and modern solutions, with a specific focus on evaluating the quality of the resulting charcoal. Additionally, improvements were evaluated to enhance production efficiency. Traditional systems cannot satisfy production requests, resulting in inefficiencies in manpower, costs, times, and yield. Conversely, recent innovations consider mobile and stationary kiln prototypes. Mobile kilns offer flexibility and cost savings but require operator expertise, limit automation, and have long cycles. In contrast, stationary systems operate continuously, increasing productivity and efficiency, despite higher investment costs. Notably, charcoal quality showed minimal differences. These findings highlighted the potential of new technologies to enhance efficiency, reduce cost and environmental impact, and promote sustainable charcoal production.

Suggested Citation

  • Alessio Mencarelli & Raffaele Cavalli & Rosa Greco & Stefano Grigolato, 2023. "Comparison of Technical and Operational Conditions of Traditional and Modern Charcoal Kilns: A Case Study in Italy," Energies, MDPI, vol. 16(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7757-:d:1287148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam, J.C., 2009. "Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal)," Renewable Energy, Elsevier, vol. 34(8), pages 1923-1925.
    2. Harun M. Kiruki & Emma H. Zanden & Patrick Kariuki & Peter H. Verburg, 2020. "The contribution of charcoal production to rural livelihoods in a semi-arid area in Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6931-6960, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    2. Tabe-Ojong, Martin Paul Jr., 2023. "Action against invasive species: Charcoal production, beekeeping, and Prosopis eradication in Kenya," Ecological Economics, Elsevier, vol. 203(C).
    3. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    4. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    5. Esther Kamwilu & Lalisa A. Duguma & Levi Orero, 2021. "The Potentials and Challenges of Achieving Sustainability through Charcoal Producer Associations in Kenya: A Missed Opportunity?," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    7. Rodrigues, Thaisa & Braghini Junior, Aldo, 2019. "Technological prospecting in the production of charcoal: A patent study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 170-183.
    8. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    9. Sueli De Fátima de Oliveira Miranda Santos & Cassiano Moro Piekarski & Cássia Maria Lie Ugaya & Danilo Barros Donato & Aldo Braghini Júnior & Antonio Carlos De Francisco & Ana Márcia Macedo Ladeira Ca, 2017. "Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    10. Antão Rodrigo Valentim & Jhon Ramírez Behainne & Aldo Braghini Junior, 2022. "Thermal Performance Analysis of Materials and Configurations for Cylindrical Sidewalls of Charcoal Kilns," Energies, MDPI, vol. 15(16), pages 1-21, August.
    11. Lohri, Christian Riuji & Rajabu, Hassan Mtoro & Sweeney, Daniel J. & Zurbrügg, Christian, 2016. "Char fuel production in developing countries – A review of urban biowaste carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1514-1530.
    12. Feuerbacher, Arndt & Siebold, Matthias & Chhetri, Ashit & Lippert, Christian & Sander, Klas, 2016. "Increasing forest utilization within Bhutan's forest conservation framework: The economic benefits of charcoal production," Forest Policy and Economics, Elsevier, vol. 73(C), pages 99-111.
    13. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
    14. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    15. Bitzer, Verena & Moździerz, Monika & Kuijpers, Rob & Schouten, Greetje & Juju, Denabo Billo, 2024. "Gender and forest resources in low- and middle-income countries: A systematic literature review," Forest Policy and Economics, Elsevier, vol. 163(C).
    16. Anders Hansson & Simon Haikola & Mathias Fridahl & Pius Yanda & Edmund Mabhuye & Noah Pauline, 2021. "Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5182-5214, April.
    17. Catherine Nabukalu & Reto Gieré, 2019. "Charcoal as an Energy Resource: Global Trade, Production and Socioeconomic Practices Observed in Uganda," Resources, MDPI, vol. 8(4), pages 1-27, December.
    18. Pereira, Emanuele Graciosa & Martins, Márcio Arêdes & Pecenka, Ralf & Carneiro, Angélica de Cássia O., 2017. "Pyrolysis gases burners: Sustainability for integrated production of charcoal, heat and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 592-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7757-:d:1287148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.