IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7695-d1284819.html
   My bibliography  Save this article

Surface Modification of Ga-Doped-LLZO (Li 7 La 3 Zr 2 O 12 ) by the Addition of Polyacrylonitrile for the Electrochemical Stability of Composite Solid Electrolytes

Author

Listed:
  • Hyewoo Noh

    (Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
    Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
    These authors contributed equally to this work.)

  • Daeil Kim

    (Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
    These authors contributed equally to this work.)

  • Wooyoung Lee

    (Korea Institute of Energy Research, Daejeon 34129, Republic of Korea)

  • Boyun Jang

    (Korea Institute of Energy Research, Daejeon 34129, Republic of Korea)

  • Jeong Sook Ha

    (Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Ji Haeng Yu

    (Korea Institute of Energy Research, Daejeon 34129, Republic of Korea)

Abstract

Composite solid electrolytes (CSEs), often incorporating succinonitrile (SCN), offer promi I confirm sing solutions for improving the performance of all-solid-state batteries. These electrolytes are typically made of ceramics such as Li 7 La 3 Zr 2 O 12 (LLZO) and polymers such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Garnet-applied polymer–ceramic electrolyte (g-PCE) is composed of PVDF-HFP, SCN, and LLZO. However, the interface between SCN and LLZO is reportedly unstable owing to the polymerization of SCN. This polymerization could cause two serious problems: (1) gelation during the mixing of LLZO and SCN and (2) degradation of ionic performance during charge and discharge. To prevent this catalytic reaction, polyacrylonitrile (PAN) can be added to the g-PCE (g-PPCE). PAN blocks the polymerization of SCN through a cyclization process involving La ions which occurs more rapidly than SCN polymerization. In this study, the enhanced chemical stability of the garnet-applied PAN-added polymer ceramic electrolyte (g-PPCE) was achieved by using an impregnation process which added SCN with 5 wt.% of PAN. The resulting CSE has an ionic conductivity of ~10 - ⁴ S/cm at room temperature. Coin-type cells assembled with LFP (LiFePO 4 ) and LNCM (LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 ) cathodes with Li-metal anodes show specific discharge capacities of 150 and 167 mAh/g at 0.1 C, respectively, and stable cycle performance. Additionally, a pouch-type cell with a discharge capacity of 5 mAh also exhibits potential electrochemical performance.

Suggested Citation

  • Hyewoo Noh & Daeil Kim & Wooyoung Lee & Boyun Jang & Jeong Sook Ha & Ji Haeng Yu, 2023. "Surface Modification of Ga-Doped-LLZO (Li 7 La 3 Zr 2 O 12 ) by the Addition of Polyacrylonitrile for the Electrochemical Stability of Composite Solid Electrolytes," Energies, MDPI, vol. 16(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7695-:d:1284819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Kwang Hee Kim & Myung-Jin Lee & Minje Ryu & Tae-Kyung Liu & Jung Hwan Lee & Changhoon Jung & Ju-Sik Kim & Jong Hyeok Park, 2024. "Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xiaolin Xiong & Ting Lin & Chunxi Tian & Guoliang Jiang & Rong Xu & Hong Li & Liquan Chen & Liumin Suo, 2024. "Creep-type all-solid-state cathode achieving long life," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Elfeky, Karem Elsayed & Wang, Qiuwang, 2023. "Techno-environ-economic assessment of photovoltaic and CSP with storage systems in China and Egypt under various climatic conditions," Renewable Energy, Elsevier, vol. 215(C).
    6. Fei Pei & Lin Wu & Yi Zhang & Yaqi Liao & Qi Kang & Yan Han & Huangwei Zhang & Yue Shen & Henghui Xu & Zhen Li & Yunhui Huang, 2024. "Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7695-:d:1284819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.