IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7641-d1282695.html
   My bibliography  Save this article

Research on Optimum Charging Current Profile with Multi-Stage Constant Current Based on Bio-Inspired Optimization Algorithms for Lithium-Ion Batteries

Author

Listed:
  • Shun-Chung Wang

    (Department of Marine Engineering, National Taiwan Ocean University (NTOU), Keelung 20224, Taiwan)

  • Zhi-Yao Zhang

    (Department of Marine Engineering, National Taiwan Ocean University (NTOU), Keelung 20224, Taiwan)

Abstract

Compared with the conventional constant-current constant-voltage (CC-CV) charging method, the multi-stage constant-current (MSCC) charging method offers advantages such as rapid charging speed and high charging efficiency. However, MSCC must find the optimal charging current profile (OCCP) in order to achieve the aforementioned benefits. Hence, in this paper, five bio-inspired optimization algorithms (BIOAs), including particle swarm optimization (PSO), modified PSO (MPSO), grey wolf optimization (GWO), modified GWO (MGWO), and the jellyfish search algorithm (JSA), are applied to solve the problem of searching for the OCCP of the MSCC. The best solution-finding procedure is run on the MATLAB platform developed based on minimizing the objective function of combining charging time (CT) and energy loss (EL) with a proportional weight. Without requiring numerous and time-consuming actual charge-and-discharge experiments, a wide range of searches can be quickly achieved only through the battery equivalent circuit model (ECM) established. The theoretical derivation and correctness are confirmed via the simulation and experimental results, which demonstrate that the OCCPs obtained by using the devised charging strategies possess the shortest CT and the best charging efficiency (CE), and among them, MPSO has the best fitness value (FV). Compared with the traditional CC-CV method, the experimental results show that the maximum improvement rates (IRs) of the studied approaches in terms of six charging performance evaluation indicators (CPEIs), including CT, charging capacity (CHC), CE, charging energy (CWh), average temperature rise (ATR), and FV, are 21.10%, 0.40%, 0.24%, 2.85%, 18.86%, and 68.99%, respectively. Furthermore, according to the comprehensive evaluation with CPEIs, the top three with the best overall performance are the JSA, MPSO, and GWO methods, respectively.

Suggested Citation

  • Shun-Chung Wang & Zhi-Yao Zhang, 2023. "Research on Optimum Charging Current Profile with Multi-Stage Constant Current Based on Bio-Inspired Optimization Algorithms for Lithium-Ion Batteries," Energies, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7641-:d:1282695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Pohlmann & Ali Mashayekh & Manuel Kuder & Antje Neve & Thomas Weyh, 2023. "Data Augmentation and Feature Selection for the Prediction of the State of Charge of Lithium-Ion Batteries Using Artificial Neural Networks," Energies, MDPI, vol. 16(18), pages 1-14, September.
    2. Filippo Gemma & Giulia Tresca & Andrea Formentini & Pericle Zanchetta, 2023. "Balanced Charging Algorithm for CHB in an EV Powertrain," Energies, MDPI, vol. 16(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulia Tresca & Pericle Zanchetta, 2024. "AC Direct Charging for Electric Vehicles via a Reconfigurable Cascaded Multilevel Converter," Energies, MDPI, vol. 17(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7641-:d:1282695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.