IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7451-d1274481.html
   My bibliography  Save this article

Empowering Sustainable Energy Solutions through Real-Time Data, Visualization, and Fuzzy Logic

Author

Listed:
  • Adam Stecyk

    (Institute of Spatial Management and Socio-Economic Geography, University of Szczecin, 70-453 Szczecin, Poland)

  • Ireneusz Miciuła

    (Institute of Economics and Finance, University of Szczecin, 70-453 Szczecin, Poland)

Abstract

This article shows the evaluation of the Integrated Real-time Energy Management Framework (IREMF), a cutting-edge system designed to develop energy management practices. The framework leverages real-time data collection, advanced visualization techniques, and fuzzy logic to optimize energy consumption patterns. To assess the performance and importance of each layer and main factor within IREMF, we employ a multi-step methodology. First, the Fuzzy Delphi Method is utilized to harness expert insights and collective intelligence, providing a holistic understanding of the framework’s functionality. Researchers used a fuzzy analytic hierarchy process (AHP) to determine the relative importance of each component of the energy system (first stage). This careful evaluation process helps ensure that resources are allocated effectively and that strategic decisions are made based on sound data. The findings of the study not only improve our understanding of the capabilities of the IREMF platform but also pave the way for future developments in energy system management. The study highlights the critical role of real-time data, visualization, fuzzy logic, and advanced decision-making methods in shaping a sustainable energy future.

Suggested Citation

  • Adam Stecyk & Ireneusz Miciuła, 2023. "Empowering Sustainable Energy Solutions through Real-Time Data, Visualization, and Fuzzy Logic," Energies, MDPI, vol. 16(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7451-:d:1274481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuxiang Ye, Steven F. Koch, and Jiangfeng Zhang, 2022. "Modelling Required Energy Consumption with Equivalence Scales," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    2. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    3. Zulfiqar, M. & Kamran, M. & Rasheed, M.B., 2022. "A blockchain-enabled trust aware energy trading framework using games theory and multi-agent system in smat grid," Energy, Elsevier, vol. 255(C).
    4. Nicoleta Cristina Gaitan & Ioan Ungurean & Ghenadie Corotinschi & Costica Roman, 2023. "An Intelligent Energy Management System Solution for Multiple Renewable Energy Sources," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    2. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    3. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Costoya, Xurxo & Arguilé-Pérez, Beatriz & Ribeiro, Américo Soares, 2024. "Economic viability of floating wave power farms considering the energy generated in the near future," Renewable Energy, Elsevier, vol. 222(C).
    4. Chongwei Zheng, 2023. "An Overview and Countermeasure of Global Wave Energy Classification," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    5. Yuri Calleo & Simone Di Zio & Francesco Pilla, 2023. "Facilitating spatial consensus in complex future scenarios through Real‐Time Spatial Delphi: A novel web‐based open platform," Futures & Foresight Science, John Wiley & Sons, vol. 5(3-4), September.
    6. Raúl Cascajo & Rafael Molina & Luís Pérez-Rojas, 2022. "Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Arguilé-Pérez, B. & Ribeiro, A.S. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2023. "Suitability of wave energy converters in northwestern Spain under the near future winter wave climate," Energy, Elsevier, vol. 278(PB).
    8. Wu, Jinming & Qin, Liuzhen & Chen, Ni & Qian, Chen & Zheng, Siming, 2022. "Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose," Energy, Elsevier, vol. 245(C).
    9. Zhou, Kaile & Chu, Yibo & Hu, Rong, 2023. "Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading," Energy, Elsevier, vol. 285(C).
    10. Jing Yu & Jicheng Liu & Jiakang Sun & Mengyu Shi, 2023. "Evolutionary Game of Digital-Driven Photovoltaic–Storage–Use Value Chain Collaboration: A Value Intelligence Creation Perspective," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    11. Pourali, Mahmoud & Kavianpour, Mohamad Reza & Kamranzad, Bahareh & Alizadeh, Mohamad Javad, 2023. "Future variability of wave energy in the Gulf of Oman using a high resolution CMIP6 climate model," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7451-:d:1274481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.