IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7446-d1274147.html
   My bibliography  Save this article

Studies on the Migration of Sulphur and Chlorine in the Pyrolysis Products of Floor and Furniture Joinery

Author

Listed:
  • Małgorzata Kajda-Szcześniak

    (Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Waldemar Ścierski

    (Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

Abstract

This article discusses research on the low-temperature pyrolysis of waste floor and furniture joinery as an example of chemical recycling. Pyrolysis was carried out at 425 °C to obtain solid, liquid, and gaseous products. In line with the circular economy concept, the waste was transformed into economical and environmentally friendly raw materials suitable for application. Research results related to the chemical composition and properties of pyrolysis products are shown, with particular emphasis on the migration process of acidic impurities, i.e., sulphur and chlorine. In some processes, the presence of such substances can be a problem. Research has shown the high potential for sulphur and chlorine migration in pyrolysis products. It was shown that for woodwork, the most sulphur was discharged with the pyrolysis gas and the least was immobilised in the oil fraction. For vinyl panels, more than 50% of the sulphur was immobilised in the char. Chlorine was immobilised mainly in the char and pyrolysis gas. A high chlorine content of 12.55% was found in the vinyl panel. At the same time, a high chlorine content was also found in the pyrolysis products of these panels. This value is several times higher than in wood-based waste.

Suggested Citation

  • Małgorzata Kajda-Szcześniak & Waldemar Ścierski, 2023. "Studies on the Migration of Sulphur and Chlorine in the Pyrolysis Products of Floor and Furniture Joinery," Energies, MDPI, vol. 16(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7446-:d:1274147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    2. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longo, Sonia & Cellura, Maurizio & Luu, Le Quyen & Nguyen, Thanh Quang & Rincione, Roberta & Guarino, Francesco, 2024. "Circular economy and life cycle thinking applied to the biomass supply chain: A review," Renewable Energy, Elsevier, vol. 220(C).
    2. Samoraj, Mateusz & Dmytryk, Agnieszka & Tuhy, Łukasz & Zdunek, Anna & Rusek, Piotr & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2023. "Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production," Energy, Elsevier, vol. 262(PA).
    3. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    4. Tina Wiegand & Martin Wynn, 2023. "Sustainability, the Circular Economy and Digitalisation in the German Textile and Clothing Industry," Sustainability, MDPI, vol. 15(11), pages 1-30, June.
    5. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    6. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    7. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    8. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    9. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    10. Franco Fassio & Chiara Chirilli, 2023. "The Circular Economy and the Food System: A Review of Principal Measuring Tools," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    11. Eugenia Rossi di Schio & Vincenzo Ballerini & Jan Kašpar & Manuela Neri & Mariagrazia Pilotelli & Edoardo Alessio Piana & Paolo Valdiserri, 2024. "Applicability of Face Masks as Recyclable Raw Materials for Self-Made Insulation Panels," Energies, MDPI, vol. 17(7), pages 1-15, March.
    12. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    13. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    14. Mia B. Münster, 2024. "Adaptive Reuse: Atmospherics in Buildings Repurposed as Coffee Shops," Sustainability, MDPI, vol. 16(4), pages 1-32, February.
    15. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    16. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability,, Springer.
    17. Florian Fizaine, 2021. "La croissance verte est-elle durable et compatible avec l’économie circulaire ? Une approche par l’identité IPAT," Post-Print hal-03884377, HAL.
    18. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    19. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    20. Steliana Rodino & Ruxandra Pop & Cristina Sterie & Andreea Giuca & Eduard Dumitru, 2023. "Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming," Agriculture, MDPI, vol. 13(11), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7446-:d:1274147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.