IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7209-d1265516.html
   My bibliography  Save this article

Theoretical and Energy Biomass Potential of Heat and Electricity Production in Kosovo

Author

Listed:
  • Ardit Sertolli

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

  • Attila Bai

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary
    ELKH-DE High-Tech Technologies for Sustainable Management Research Group, University of Debrecen, Boszormenyi Street 138, 4032 Debrecen, Hungary)

  • Zoltán Gabnai

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary
    ELKH-DE High-Tech Technologies for Sustainable Management Research Group, University of Debrecen, Boszormenyi Street 138, 4032 Debrecen, Hungary)

  • Tamás Mizik

    (Department of Agricultural Economics, Corvinus University of Budapest, 1093 Budapest, Hungary)

  • Albiona Pestisha

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

The energy use of residues from agriculture, forestry, and solid waste can foster the transition towards a more renewable energy supply. This paper analyzes the energy potential of the above-mentioned sources for energy applications in Kosovo. The analysis is based on statistical data from different studies and reports, analyzing and calculating them to determine the theoretical and energy biomass potential. Kosovo can increase its self-sufficiency by taking advantage of its rich but under-utilized potential of biomass energy sources. This is a novelty study in this area, considering Kosovo lignite-dominated heat energy and electricity consumption and the available special literature. According to our estimates, the theoretical potential is 6.13 million tons/year, while the biomass energy potential should be around 4.57 million tons/year, including approximately 74.6% of biomass, which can be used for energy needs (heating and electricity). Based on the data and calculations, the available and usable potential shows biomass as an energy source with high potential in Kosovo; its share is very low, but it is reasonable to grow for both environmental and economic reasons.

Suggested Citation

  • Ardit Sertolli & Attila Bai & Zoltán Gabnai & Tamás Mizik & Albiona Pestisha, 2023. "Theoretical and Energy Biomass Potential of Heat and Electricity Production in Kosovo," Energies, MDPI, vol. 16(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7209-:d:1265516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    2. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Sebastian Hagel & Fokko Schütt, 2024. "Reinforcement Fiber Production from Wheat Straw for Wastepaper-Based Packaging Using Steam Refining with Sodium Carbonate," Clean Technol., MDPI, vol. 6(1), pages 1-17, March.
    4. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    5. Simone Bergonzoli & Alessandro Suardi & Negar Rezaie & Vincenzo Alfano & Luigi Pari, 2020. "An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection," Energies, MDPI, vol. 13(5), pages 1-15, March.
    6. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    7. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    8. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    9. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    10. Zech, Konstantin M. & Meisel, Kathleen & Brosowski, André & Toft, Lars Villadsgaard & Müller-Langer, Franziska, 2016. "Environmental and economic assessment of the Inbicon lignocellulosic ethanol technology," Applied Energy, Elsevier, vol. 171(C), pages 347-356.
    11. Buchspies, Benedikt & Kaltschmitt, Martin & Neuling, Ulf, 2020. "Potential changes in GHG emissions arising from the introduction of biorefineries combining biofuel and electrofuel production within the European Union – A location specific assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Taxidis, Efstratios T. & Menexes, George C. & Mamolos, Andreas P. & Tsatsarelis, Constantinos A. & Anagnostopoulos, Christos D. & Kalburtji, Kyriaki L., 2015. "Comparing organic and conventional olive groves relative to energy use and greenhouse gas emissions associated with the cultivation of two varieties," Applied Energy, Elsevier, vol. 149(C), pages 117-124.
    13. Christoph Glasner & Christopher Vieregge & Josef Robert & Johanna Fenselau & Zahra Bitarafan & Christian Andreasen, 2019. "Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock," Energies, MDPI, vol. 12(9), pages 1-13, May.
    14. Daniele Cocco & Paola A. Deligios & Luigi Ledda & Leonardo Sulas & Adriana Virdis & Gianluca Carboni, 2014. "LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment," Energies, MDPI, vol. 7(10), pages 1-24, September.
    15. Song, Junnian & Yang, Wei & Higano, Yoshiro & Wang, Xian’en, 2015. "Dynamic integrated assessment of bioenergy technologies for energy production utilizing agricultural residues: An input–output approach," Applied Energy, Elsevier, vol. 158(C), pages 178-189.
    16. Prespa Ymeri & Csaba Gyuricza & Csaba Fogarassy, 2020. "Farmers’ Attitudes Towards the Use of Biomass as Renewable Energy—A Case Study from Southeastern Europe," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    17. Yongzhong Jiang & Valerii Havrysh & Oleksandr Klymchuk & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2019. "Utilization of Crop Residue for Power Generation: The Case of Ukraine," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    18. Zhang, Jixiang & Li, Jun & Dong, Changqing & Zhang, Xiaolei & Rentizelas, Athanasios & Shen, Delong, 2021. "Comprehensive assessment of sustainable potential of agricultural residues for bioenergy based on geographical information system: A case study of China," Renewable Energy, Elsevier, vol. 173(C), pages 466-478.
    19. Sastre, C.M. & González-Arechavala, Y. & Santos, A.M., 2015. "Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability," Applied Energy, Elsevier, vol. 154(C), pages 900-911.
    20. Poritosh Roy & Animesh Dutta & Bill Deen, 2015. "An Approach to Identify the Suitable Plant Location for Miscanthus -Based Ethanol Industry: A Case Study in Ontario, Canada," Energies, MDPI, vol. 8(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7209-:d:1265516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.