IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7188-d1264674.html
   My bibliography  Save this article

Suitable Analysis of Micro-Increased Capacity Model on Cold-End System of Nuclear Power Plant

Author

Listed:
  • Xinming Xi

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Shixiong An

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Lei Xu

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Xiaoze Du

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Huimin Wei

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Hongchen Sun

    (Beijing Jingqiao Thermal Power Co., Ltd., Beijing 101102, China)

Abstract

The cold-end system of a nuclear power plant is a key complex node connecting the power generation system with the variable environmental conditions, and its operation, economy, and stability have become the main obstacles to further improving the performance of the first and second circuits. The current research on the interactions between the cold-end system and the thermal cycle of nuclear power mainly adopts the micropower model, while the existing condenser model does not take into account the influence of the turbine exhaust resistance and exhaust flow and other factors on the condenser vacuum change caused by the change in the circulating water flow rate and temperature in determining the optimal vacuum. This ignores the interactions between the equipment and the interconnections between the parameters, which results in the reduction of the model’s accuracy. This paper takes a nuclear power unit as an example, adopts the “constant flow calculation” method to calculate the heat balance of the two-loop thermal system of the nuclear power plant, and constructs an integrated simulation model of the reaction environment variables, the cold-end system, and the thermal cycle. Taking the circulating water temperature and flow rate as variables, the errors of the separate condenser model and the coupled model in circulating water parameter changes were obtained under the condition of satisfying the thermal system operation, and the circulating water temperature and flow rate change ranges applied by the separate condenser model were analyzed in order to reduce the amount of calculations when the unit power error was 1%. The results show that the circulating water temperature is 4 °C, the applicable range of the circulating water flow rate is 42 m 3 /s to the rated flow rate, the applicable range of the circulating water temperature is 20 °C, the applicable range of the circulating water flow rate is 32.12 m 3 /s to the rated flow rate, the applicable range of the circulating water temperature is 26 °C, the applicable range of the circulating water flow rate is 38.63 m 3 /s to the rated flow rate, the applicable range of the circulating water temperature is 30 °C, and the applicable range of the circulating water flow rate is 45 m 3 /s to the rated flow rate. At a circulating water temperature of 26 °C, the applicable range of the circulating water flow is between 38.63 m 3 /s and the rated flow; at a circulating water temperature of 30 °C, the applicable range of the circulating water flow is between 45.64 m 3 /s and the rated flow.

Suggested Citation

  • Xinming Xi & Shixiong An & Lei Xu & Xiaoze Du & Huimin Wei & Hongchen Sun, 2023. "Suitable Analysis of Micro-Increased Capacity Model on Cold-End System of Nuclear Power Plant," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7188-:d:1264674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes," Energy, Elsevier, vol. 145(C), pages 734-746.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    3. Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).
    4. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    5. Xin Wang & Gang Zhao & Xinhe Qu & Xiaoyong Yang & Jie Wang & Peng Wang, 2023. "Influence of Cooling Water Parameters on the Thermal Performance of the Secondary Circuit System of a Modular High-Temperature Gas-Cooled Reactor Nuclear Power Plant," Energies, MDPI, vol. 16(18), pages 1-17, September.
    6. Xin, Yong-Lin & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2024. "An efficient yet accurate optimization algorithm for thermal systems integrating heat current method and generalized Benders decomposition," Energy, Elsevier, vol. 304(C).
    7. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    8. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).
    9. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    10. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    11. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    12. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omidali, 2019. "Energy, exergy and environmental (3E) analysis of the existing CHP system in a petrochemical plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 234-242.
    13. Zhu, Shahong & Zhang, Man & Huang, Yiqun & Wu, Yuxin & Yang, Hairui & Lyu, Junfu & Gao, Xinyu & Wang, Fengjun & Yue, Guangxi, 2019. "Thermodynamic analysis of a 660 MW ultra-supercritical CFB boiler unit," Energy, Elsevier, vol. 173(C), pages 352-363.
    14. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    15. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Transient behavior of the cold end system in an indirect dry cooling thermal power plant under varying operating conditions," Energy, Elsevier, vol. 181(C), pages 1202-1212.
    16. Jun Wang & Baocang Ding & Ping Wang, 2022. "Modeling and Finite-Horizon MPC for a Boiler-Turbine System Using Minimal Realization State-Space Model," Energies, MDPI, vol. 15(21), pages 1-20, October.
    17. Jiayou Liu & Fengzhong Sun, 2019. "Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control," Energies, MDPI, vol. 12(4), pages 1-20, February.
    18. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Wang, Zhu & Yan, Junjie, 2018. "Thermodynamics analysis on a heat exchanger unit during the transient processes based on the second law," Energy, Elsevier, vol. 165(PB), pages 622-633.
    20. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7188-:d:1264674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.