IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p528-d1023384.html
   My bibliography  Save this article

Blockchain and Machine Learning for Future Smart Grids: A Review

Author

Listed:
  • Vidya Krishnan Mololoth

    (Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden)

  • Saguna Saguna

    (Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden)

  • Christer Åhlund

    (Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden)

Abstract

Developments such as the increasing electrical energy demand, growth of renewable energy sources, cyber–physical security threats, increased penetration of electric vehicles (EVs), and unpredictable behavior of prosumers and EV users pose a range of challenges to the electric power system. To address these challenges, a decentralized system using blockchain technology and machine learning techniques for secure communication, distributed energy management and decentralized energy trading between prosumers is required. Blockchain enables secure distributed trust platforms, addresses optimization and reliability challenges, and allows P2P distributed energy exchange as well as flexibility services between customers. On the other hand, machine learning techniques enable intelligent smart grid operations by using prediction models and big data analysis. Motivated from these facts, in this review, we examine the potential of combining blockchain technology and machine learning techniques in the development of smart grid and investigate the benefits achieved by using both techniques for the future smart grid scenario. Further, we discuss research challenges and future research directions of applying blockchain and machine learning techniques for smart grids both individually as well as combining them together. The identified areas that require significant research are demand management in power grids, improving the security of grids with better consensus mechanisms, electric vehicle charging systems, scheduling of the entire grid system, designing secure microgrids, and the interconnection of different blockchain networks.

Suggested Citation

  • Vidya Krishnan Mololoth & Saguna Saguna & Christer Åhlund, 2023. "Blockchain and Machine Learning for Future Smart Grids: A Review," Energies, MDPI, vol. 16(1), pages 1-39, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:528-:d:1023384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joao C. Ferreira & Catarina Ferreira da Silva & Jose P. Martins, 2021. "Roaming Service for Electric Vehicle Charging Using Blockchain-Based Digital Identity," Energies, MDPI, vol. 14(6), pages 1-23, March.
    2. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    3. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    4. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    5. Ante, L. & Steinmetz, F. & Fiedler, I., 2021. "Blockchain and energy: A bibliometric analysis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Hamzah Khan & Tariq Masood, 2022. "Impact of Blockchain Technology on Smart Grids," Energies, MDPI, vol. 15(19), pages 1-27, September.
    7. Yaçine Merrad & Mohamed Hadi Habaebi & Siti Fauziah Toha & Md. Rafiqul Islam & Teddy Surya Gunawan & Mokhtaria Mesri, 2022. "Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids," Energies, MDPI, vol. 15(12), pages 1-27, June.
    8. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    9. Seong-Kyu Kim & Jun-Ho Huh, 2018. "A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective," Energies, MDPI, vol. 11(8), pages 1-22, July.
    10. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    11. Mansoor, Muhammad & Grimaccia, Francesco & Leva, Sonia & Mussetta, Marco, 2021. "Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 282-293.
    12. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    13. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Mikołaj Gwiazdowicz & Marek Natkaniec, 2023. "Feature Selection and Model Evaluation for Threat Detection in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-25, June.
    3. Vitor Monteiro & Joao L. Afonso, 2023. "The Future of Electrical Power Grids: A Direction Rooted in Power Electronics," Energies, MDPI, vol. 16(13), pages 1-10, June.
    4. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
    5. Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
    6. Wenbing Zhao & Quan Qi & Jiong Zhou & Xiong Luo, 2023. "Blockchain-Based Applications for Smart Grids: An Umbrella Review," Energies, MDPI, vol. 16(17), pages 1-35, August.
    7. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    8. Qian Wang & Xiaolong Yang & Xiaoyu Yu & Jingwen Yun & Jinbo Zhang, 2023. "Electric Vehicle Participation in Regional Grid Demand Response: Potential Analysis Model and Architecture Planning," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    9. Casey Watters, 2023. "When Criminals Abuse the Blockchain: Establishing Personal Jurisdiction in a Decentralised Environment," Laws, MDPI, vol. 12(2), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Bharati S. Ainapure & Nicu Bizon, 2023. "A Blockchain-Enabled Approach for Enhancing Synchrophasor Measurement in Smart Grid 3.0," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    4. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    6. Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
    7. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    8. Elarbi Badidi, 2022. "Edge AI and Blockchain for Smart Sustainable Cities: Promise and Potential," Sustainability, MDPI, vol. 14(13), pages 1-30, June.
    9. Savelli, Iacopo & Hepburn, Cameron & Morstyn, Thomas, 2024. "A blueprint for energy systems in the era of central bank digital currencies," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    10. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    11. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    12. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Gangjun Gong & Zhening Zhang & Xinyu Zhang & Nawaraj Kumar Mahato & Lin Liu & Chang Su & Haixia Yang, 2020. "Electric Power System Operation Mechanism with Energy Routers Based on QoS Index under Blockchain Architecture," Energies, MDPI, vol. 13(2), pages 1-22, January.
    14. Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Marcin Wołowicz, 2022. "Electricity Usage Settlement System Based on a Cryptocurrency Instrument," Energies, MDPI, vol. 15(19), pages 1-35, September.
    15. Alexandre Lucas & Dimitrios Geneiatakis & Yannis Soupionis & Igor Nai-Fovino & Evangelos Kotsakis, 2021. "Blockchain Technology Applied to Energy Demand Response Service Tracking and Data Sharing," Energies, MDPI, vol. 14(7), pages 1-17, March.
    16. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Florentina Magda Enescu & Nicu Bizon & Adrian Onu & Maria Simona Răboacă & Phatiphat Thounthong & Alin Gheorghita Mazare & Gheorghe Șerban, 2020. "Implementing Blockchain Technology in Irrigation Systems That Integrate Photovoltaic Energy Generation Systems," Sustainability, MDPI, vol. 12(4), pages 1-30, February.
    18. Heymann, Fabian & Milojevic, Tatjana & Covatariu, Andrei & Verma, Piyush, 2023. "Digitalization in decarbonizing electricity systems – Phenomena, regional aspects, stakeholders, use cases, challenges and policy options," Energy, Elsevier, vol. 262(PB).
    19. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    20. Nan Jiang & Qi Han & Guohua Zhu, 2023. "A Three-Dimensional Analytical Framework: Textual Analysis and Comparison of Chinese and US Energy Blockchain Policies," Sustainability, MDPI, vol. 15(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:528-:d:1023384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.