IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v64y2021ics0160791x20313105.html
   My bibliography  Save this article

The blockchain-enabled technology and carbon performance: Insights from early adopters

Author

Listed:
  • Fernando, Yudi
  • Rozuar, Nor Hazwani Mohd
  • Mergeresa, Fineke

Abstract

This paper examined the drivers of blockchain technology adoption and carbon performance using the theory of technology-organization-environment (TOE) as the basis for the development of a technology adoption framework. Blockchain technology has passed the proof testing phase and is attracting early adopters who can gain benefits from it. Manufacturing firms that had adopted the blockchain technology and voluntary reported the carbon emission were targeted as the sample and survey data were collected from manufacturing firms that were registered with the Association of Malaysian Manufacturers. Unfavourable support of top management and the lack of technology competence were the main barriers to the adoption of blockchain technology among manufacturing firms. The results indicate that firms did not achieve low carbon performance and that a lack of pressure from competitors and technical competency to undertake blockchain technology were factors. No evidence existed demonstrating a linkage of early adopters of blockchain technology with and low carbon performance. Recommendations of this study include that firms should take the initiative to record the energy consumption, engage in the transfer of carbon credits, and monitor carbon performance using reliable technology to improve business transparency and sustainability.

Suggested Citation

  • Fernando, Yudi & Rozuar, Nor Hazwani Mohd & Mergeresa, Fineke, 2021. "The blockchain-enabled technology and carbon performance: Insights from early adopters," Technology in Society, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:teinso:v:64:y:2021:i:c:s0160791x20313105
    DOI: 10.1016/j.techsoc.2020.101507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X20313105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2020.101507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    3. Mohammad Nasih & Iman Harymawan & Yuanita Intan Paramitasari & Azizah Handayani, 2019. "Carbon Emissions, Firm Size, and Corporate Governance Structure: Evidence from the Mining and Agricultural Industries in Indonesia," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    4. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    5. Thollander, Patrik & Danestig, Maria & Rohdin, Patrik, 2007. "Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs," Energy Policy, Elsevier, vol. 35(11), pages 5774-5783, November.
    6. Zhang, L.P. & Zhou, P., 2018. "A non-compensatory composite indicator approach to assessing low-carbon performance," European Journal of Operational Research, Elsevier, vol. 270(1), pages 352-361.
    7. Kevin Zhu & Kenneth L. Kraemer & Sean Xu, 2006. "The Process of Innovation Assimilation by Firms in Different Countries: A Technology Diffusion Perspective on E-Business," Management Science, INFORMS, vol. 52(10), pages 1557-1576, October.
    8. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    9. Pilkington Marc, 2016. "Blockchain Technology: Principles and Applications," Post-Print halshs-01231205, HAL.
    10. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    11. Ritter, Thomas & Gemunden, Hans Georg, 2004. "The impact of a company's business strategy on its technological competence, network competence and innovation success," Journal of Business Research, Elsevier, vol. 57(5), pages 548-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Hsiang Lu & Ching-Chiang Yeh & Yu-Mei Kuo, 2024. "Exploring the critical factors affecting the adoption of blockchain: Taiwan’s banking industry," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    2. Ahmad, Raja Wasim & Salah, Khaled & Jayaraman, Raja & Yaqoob, Ibrar & Omar, Mohammed, 2022. "Blockchain in oil and gas industry: Applications, challenges, and future trends," Technology in Society, Elsevier, vol. 68(C).
    3. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    4. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    5. Han, Zhanbing & Heng, Yixin, 2024. "Do fintech and trade diversification discard the natural resource dependency in MENA countries?," Resources Policy, Elsevier, vol. 89(C).
    6. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    7. Awais, Minahil & Afzal, Ayesha & Firdousi, Saba & Hasnaoui, Amir, 2023. "Is fintech the new path to sustainable resource utilisation and economic development?," Resources Policy, Elsevier, vol. 81(C).
    8. Lu, Liyan & Liang, Changyong & Gu, Dongxiao & Ma, Yiming & Xie, Yuguang & Zhao, Shuping, 2021. "What advantages of blockchain affect its adoption in the elderly care industry? A study based on the technology–organisation–environment framework," Technology in Society, Elsevier, vol. 67(C).
    9. Javeed, Sohail Ahmad & Akram, Umair, 2024. "The factors behind block-chain technology that boost the circular economy: An organizational perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    10. Yadav, Sanjeev & Samadhiya, Ashutosh & Kumar, Anil & Luthra, Sunil & Pandey, Krishan Kumar, 2024. "Nexus between fintech, green finance and natural resources management: Transition of BRICS nation industries from resource curse to resource blessed sustainable economies," Resources Policy, Elsevier, vol. 91(C).
    11. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    12. Zhu, Xiaoge & Saha, Tanaya & Chishti, Muhammad Zubair & Xu, Qi, 2024. "Exploring the impacts of financial technologies and natural resources on sustainable development to advance SDGs-2030 across various time horizons," Resources Policy, Elsevier, vol. 91(C).
    13. Latan, Hengky & Lopes de Sousa Jabbour, Ana Beatriz & Sarkis, Joseph & Chiappetta Jabbour, Charbel Jose & Ali, Murad, 2024. "The nexus of supply chain performance and blockchain technology in the digitalization era: Insights from a fast-growing economy," Journal of Business Research, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Zhang, Jian & Zhang, Xuanjian & Liu, Wei & Ji, Ming & Mishra, Arunodaya Raj, 2022. "Critical success factors of blockchain technology to implement the sustainable supply chain using an extended decision-making approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Moritz Böhmecke‐Schwafert & Marie Wehinger & Robin Teigland, 2022. "Blockchain for the circular economy: Theorizing blockchain's role in the transition to a circular economy through an empirical investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3786-3801, December.
    5. Kirti Nayal & Rakesh D. Raut & Balkrishna E. Narkhede & Pragati Priyadarshinee & Gajanan B. Panchal & Vidyadhar V. Gedam, 2023. "Antecedents for blockchain technology-enabled sustainable agriculture supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 293-337, August.
    6. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    7. Kimani, Danson & Adams, Kweku & Attah-Boakye, Rexford & Ullah, Subhan & Frecknall-Hughes, Jane & Kim, Ja, 2020. "Blockchain, business and the fourth industrial revolution: Whence, whither, wherefore and how?," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    9. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Florentina Magda Enescu & Nicu Bizon & Adrian Onu & Maria Simona Răboacă & Phatiphat Thounthong & Alin Gheorghita Mazare & Gheorghe Șerban, 2020. "Implementing Blockchain Technology in Irrigation Systems That Integrate Photovoltaic Energy Generation Systems," Sustainability, MDPI, vol. 12(4), pages 1-30, February.
    11. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    12. Brilliantova, Vlada & Thurner, Thomas Wolfgang, 2019. "Blockchain and the future of energy," Technology in Society, Elsevier, vol. 57(C), pages 38-45.
    13. Ante, L. & Steinmetz, F. & Fiedler, I., 2021. "Blockchain and energy: A bibliometric analysis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Naif Al Azmi & Ghaleb Sweis & Rateb Sweis & Farouq Sammour, 2022. "Exploring Implementation of Blockchain for the Supply Chain Resilience and Sustainability of the Construction Industry in Saudi Arabia," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    15. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Deqing Ma & Pengcheng Ma & Jinsong Hu, 2024. "The Impact of Blockchain Technology Adoption on an E-Commerce Closed-Loop Supply Chain Considering Consumer Trust," Sustainability, MDPI, vol. 16(4), pages 1-41, February.
    17. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    18. Md Al Amin & Dewan Hafiz Nabil & Roberto Baldacci & Md. Habibur Rahman, 2023. "Exploring Blockchain Implementation Challenges for Sustainable Supply Chains: An Integrated Fuzzy TOPSIS–ISM Approach," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    19. Choi, Tsan-Ming & Wen, Xin & Sun, Xuting & Chung, Sai-Ho, 2019. "The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 178-191.
    20. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:64:y:2021:i:c:s0160791x20313105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.