IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6873-d1250458.html
   My bibliography  Save this article

Prediction of Battery Return Volumes for 3R: Remanufacturing, Reuse, and Recycling

Author

Listed:
  • Achim Kampker

    (Chair of Production Engineering of E-Mobility Components, RWTH Aachen University, 52074 Aachen, Germany)

  • Heiner Hans Heimes

    (Chair of Production Engineering of E-Mobility Components, RWTH Aachen University, 52074 Aachen, Germany)

  • Christian Offermanns

    (Chair of Production Engineering of E-Mobility Components, RWTH Aachen University, 52074 Aachen, Germany)

  • Merlin Frank

    (Chair of Production Engineering of E-Mobility Components, RWTH Aachen University, 52074 Aachen, Germany)

  • Domenic Klohs

    (Chair of Production Engineering of E-Mobility Components, RWTH Aachen University, 52074 Aachen, Germany)

  • Khanh Nguyen

    (Chair of Production Engineering of E-Mobility Components, RWTH Aachen University, 52074 Aachen, Germany)

Abstract

Life cycle strategies for traction batteries, such as remanufacturing, reuse, and recycling of retired automotive lithium-ion batteries (LIBs), have received growing attention, as large volumes of LIBs will retire in the near future and the demand for LIBs continues to grow. At the same time, the relevance of the sustainability of a battery system over its entire life cycle is increasing as factors such as the EU Battery Regulation provide greater market and product transparency. As a result, research and industry require forecasts in order to assess the future market situation and to make well-founded decisions. Therefore, this paper provides forecasts of the return volumes of battery systems from BEVs and PHEVs up to 2035. Additionally, a representative European battery pack for PHEVs and BEVs was evaluated for each year since 2013, based on the ten vehicles with the largest market share in each year until 2021. In addition, the battery return streams are divided into three different 3R strategies based on expert interviews in order to evaluate the upcoming workload in these areas. The term “3R” refers to the sum of the currently existing pathways around reuse, remanufacturing, and recycling. In 2030, about 38.8 GWh will return and enter the recycling process annually. For battery reuse, about 13 GWh will return every year from 2030 onwards, ready to be used in stationary storage for energy transition. Compared to this, battery remanufacturing is expected to be supplied with a slightly lower volume of approximately 11 GWh per year.

Suggested Citation

  • Achim Kampker & Heiner Hans Heimes & Christian Offermanns & Merlin Frank & Domenic Klohs & Khanh Nguyen, 2023. "Prediction of Battery Return Volumes for 3R: Remanufacturing, Reuse, and Recycling," Energies, MDPI, vol. 16(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6873-:d:1250458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    2. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    3. Liu, Zhe & Song, Juhyun & Kubal, Joseph & Susarla, Naresh & Knehr, Kevin W. & Islam, Ehsan & Nelson, Paul & Ahmed, Shabbir, 2021. "Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles," Energy Policy, Elsevier, vol. 158(C).
    4. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merlin Frank & Daniel Serafin Holz & Domenic Klohs & Christian Offermanns & Heiner Hans Heimes & Achim Kampker, 2024. "Identification and Mitigation of Predominant Challenges in the Utilization of Aged Traction Batteries within Stationary Second-Life Scenarios," Energies, MDPI, vol. 17(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    2. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    3. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    4. Szymkowiak, Magdalena & Iwińska, Maria, 2016. "Characterizations of Discrete Weibull related distributions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 41-48.
    5. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
    6. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    7. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    8. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Aging abnormality detection of lithium-ion batteries combining feature engineering and deep learning," Energy, Elsevier, vol. 297(C).
    9. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    10. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    11. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    12. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    13. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    14. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2024. "Free-ridership in subsidies for company- and private electric vehicles," Energy Economics, Elsevier, vol. 131(C).
    15. Liu, Xutao & Tao, Shengyu & Fu, Shiyi & Ma, Ruifei & Cao, Tingwei & Fan, Hongtao & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Binary multi-frequency signal for accurate and rapid electrochemical impedance spectroscopy acquisition in lithium-ion batteries," Applied Energy, Elsevier, vol. 364(C).
    16. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    17. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    18. Bentaha, Mohand-Lounes & Voisin, Alexandre & Marangé, Pascale, 2020. "A decision tool for disassembly process planning under end-of-life product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 386-401.
    19. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    20. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6873-:d:1250458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.