IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2703-d1096879.html
   My bibliography  Save this article

Application of an Artificial Neural Network for Detecting, Classifying, and Making Decisions about Asymmetric Short Circuits in a Synchronous Generator

Author

Listed:
  • Marinka Baghdasaryan

    (Institute of Energetics and Electrical Engineering, National Polytechnic University of Armenia, Teryan St.105, Yerevan 0009, Armenia)

  • Azatuhi Ulikyan

    (Institute of Information and Telecommunication Technologies and Electronics, National Polytechnic University of Armenia, Teryan St.105, Yerevan 0009, Armenia)

  • Arusyak Arakelyan

    (Institute of Energetics and Electrical Engineering, National Polytechnic University of Armenia, Teryan St.105, Yerevan 0009, Armenia)

Abstract

Fast and accurate detection of emerging faults in synchronous generators, which have found wide application in power and transport systems, contributes to ensuring reliable operation of the entire system. This article presents a new approach to making accurate decisions on the continuation of the operation of damaged generators in accordance with the requirements of IEEE standards. The necessity of limiting the duration of operation of the generator in conditions of asymmetric short circuits in the stator windings is substantiated. The authors of the article, based on an artificial neural network in the Matlab software environment, have developed a model for detecting, classifying, and making quick and accurate decisions about the operation of the generator in the event of asymmetric short circuits in the stator windings of the generator. This makes it possible to simulate the operation of the generator at various parameters. Prior to training the neural network, the database formed by phase current and voltage signals was analyzed by various features. The neural network was trained using the back-error-propagation algorithm. The output 10 neurons of the network showed the state of the phase windings of the stator. The recorded information of the output neurons was evaluated, in terms of meeting the requirements of the IEEE standard, and decisions were made about continuing or interrupting the generator operation. Tests of the effectiveness of the model showed that it could achieve the desired result at step 49, and the calculated accuracy was 99.5833%. The results obtained can be successfully used in the development of high-speed and highly reliable diagnostic systems and control and decision-making systems for generators for various purposes.

Suggested Citation

  • Marinka Baghdasaryan & Azatuhi Ulikyan & Arusyak Arakelyan, 2023. "Application of an Artificial Neural Network for Detecting, Classifying, and Making Decisions about Asymmetric Short Circuits in a Synchronous Generator," Energies, MDPI, vol. 16(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2703-:d:1096879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Sokólski & Tomasz A. Rutkowski & Bartosz Ceran & Dariusz Horla & Daria Złotecka, 2021. "Power System Stabilizer as a Part of a Generator MPC Adaptive Predictive Control System," Energies, MDPI, vol. 14(20), pages 1-25, October.
    2. Aman A. Tanvir & Adel Merabet, 2020. "Artificial Neural Network and Kalman Filter for Estimation and Control in Standalone Induction Generator Wind Energy DC Microgrid," Energies, MDPI, vol. 13(7), pages 1-16, April.
    3. Weilin Li & Yang Yang & Xiaobin Zhang, 2018. "Digital Generator Control Unit Design for a Variable Frequency Synchronous Generator in MEA," Energies, MDPI, vol. 11(1), pages 1-17, January.
    4. Myada Shadoul & Razzaqul Ahshan & Rashid S. AlAbri & Abdullah Al-Badi & Mohammed Albadi & Mohsin Jamil, 2022. "A Comprehensive Review on a Virtual-Synchronous Generator: Topologies, Control Orders and Techniques, Energy Storages, and Applications," Energies, MDPI, vol. 15(22), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Sokólski & Tomasz A. Rutkowski & Bartosz Ceran & Daria Złotecka & Dariusz Horla, 2023. "Event-Triggered Communication in Cooperative, Adaptive Model Predictive Control of a Nuclear Power Plant’s Turbo–Generator Set," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Mohammad Soleymannejad & Danial Sadrian Zadeh & Behzad Moshiri & Ebrahim Navid Sadjadi & Jesús García Herrero & Jose Manuel Molina López, 2022. "State Estimation Fusion for Linear Microgrids over an Unreliable Network," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Yayao Zhang & Miao Han & Meng Zhan, 2023. "The Concept and Understanding of Synchronous Stability in Power Electronic-Based Power Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    4. Malgorzata Binek & Andrzej Kanicki & Pawel Rozga, 2021. "Application of an Artificial Neural Network for Measurements of Synchrophasor Indicators in the Power System," Energies, MDPI, vol. 14(9), pages 1-14, April.
    5. Michał Izdebski & Robert Małkowski & Piotr Miller, 2022. "New Performance Indices for Power System Stabilizers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    6. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    7. Yitao Liu & Hongle Chen & Runqiu Fang, 2023. "Virtual Inertia Implemented by Quasi-Z-Source Power Converter for Distributed Power System," Energies, MDPI, vol. 16(18), pages 1-18, September.
    8. Paweł Sokólski & Tomasz A. Rutkowski & Bartosz Ceran & Daria Złotecka & Dariusz Horla, 2022. "The Influence of Cooperation on the Operation of an MPC Controller Pair in a Nuclear Power Plant Turbine Generator Set," Energies, MDPI, vol. 15(18), pages 1-19, September.
    9. Yajun Zhao & Wenxin Huang & Feifei Bu, 2023. "Virtual Vector-Based Direct Power Control of a Three-Phase Coupled Inductor-Based Bipolar-Output Active Rectifier for More Electric Aircraft," Energies, MDPI, vol. 16(7), pages 1-21, March.
    10. Zheng Cao & Yuanjun Zhou & Na Wang, 2020. "Starting Pulse Vibration Torque Analysis of Aviation Variable Frequency Asynchronous Motor Based on Low-Frequency Step-Down Starting Methods," Energies, MDPI, vol. 13(6), pages 1-18, March.
    11. Grzegorz Drałus & Damian Mazur & Jacek Kusznier & Jakub Drałus, 2023. "Application of Artificial Intelligence Algorithms in Multilayer Perceptron and Elman Networks to Predict Photovoltaic Power Plant Generation," Energies, MDPI, vol. 16(18), pages 1-23, September.
    12. Chan Gu & Encheng Chi & Chujia Guo & Mostafa M. Salah & Ahmed Shaker, 2023. "A New Self-Tuning Deep Neuro-Sliding Mode Control for Multi-Machine Power System Stabilizer," Mathematics, MDPI, vol. 11(7), pages 1-18, March.
    13. Yongjie Wang & Huizhen Wang & Weifeng Liu & Qin Wang, 2021. "A Novel Fuzzy PI Control Method for Variable Frequency Brushless Synchronous Generators," Energies, MDPI, vol. 14(23), pages 1-19, November.
    14. Adolfo Dannier & Emanuele Fedele & Ivan Spina & Gianluca Brando, 2022. "Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids for Turbine-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(17), pages 1-5, September.
    15. José Antonio Cortajarena & Oscar Barambones & Patxi Alkorta & Jon Cortajarena, 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    16. Daniel Carletti & Thiago Amorim & Lucas Encarnação, 2023. "Virtual Armature Resistance-Based Control for Fault Current Limiting in a High-Order VSG and the Impact on Its Transient Stability," Energies, MDPI, vol. 16(12), pages 1-16, June.
    17. Weam EL Merrassi & Abdelouahed Abounada & Mohamed Ramzi, 2022. "Performance analysis of novel robust ANN-MRAS observer applied to induction motor drive," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 2011-2028, August.
    18. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2021. "Optimization of Wind Energy Battery Storage Microgrid by Division Algorithm Considering Cumulative Exergy Demand for Power-Water Cogeneration," Energies, MDPI, vol. 14(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2703-:d:1096879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.