IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6642-d1241056.html
   My bibliography  Save this article

The Impact of Degradation of PV/Battery-Independent System Components on Technical and Economic Indicators and Sizing Process

Author

Listed:
  • Agata Mielcarek

    (Faculty of Environmental Engineering and Energy, Poznan University of Technology, 5 Piotrowo Street, 61-138 Poznan, Poland)

  • Bartosz Ceran

    (Faculty of Environmental Engineering and Energy, Poznan University of Technology, 5 Piotrowo Street, 61-138 Poznan, Poland)

  • Jakub Jurasz

    (Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Plac Grunwaldzki 13, 50-377 Wroclaw, Poland)

Abstract

This article presents research on modelling the operation of an independent electricity generation system consisting of a photovoltaic installation and energy storage in the form of electrochemical batteries (PV/BAT). The generation system was considered primarily in the context of its sizing process, i.e., the selection of the installed power of the photovoltaic installation (PV) and the rated capacity of the battery (BAT). Traditionally, the model includes a one-year analysis of the generation system based on initial (nominal) parameters without considering component performance degradation. The novelty of this research lies in the long-term simulation of the system operation, considering the degradation of its components. The sizing process was based on the numerical method. The best solution is selected on the basis of the economic criterion, while satisfying the reliability condition. The simulations were conducted using Matlab software. Using a comparative analysis, the scale of technical and economic oversizing of the system was determined by considering long-term reliability. For the assumed customer load profile, insolation profile, and battery operation in the range of 25–100% of the available capacity, providing the assumed level of reliability after accounting for degradation in the sizing process resulted in a 33.33% increase in the rated battery capacity, an 18.75% increase in the installed photovoltaic plant capacity, and a 19.5% increase in the system cost of electricity (LCOE) relative to the results of the sizing process without accounting for component performance degradation over the years of operation.

Suggested Citation

  • Agata Mielcarek & Bartosz Ceran & Jakub Jurasz, 2023. "The Impact of Degradation of PV/Battery-Independent System Components on Technical and Economic Indicators and Sizing Process," Energies, MDPI, vol. 16(18), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6642-:d:1241056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    2. Zheng, Shiyong & Shahzad, Muhammad & Asif, Hafiz Muhammad & Gao, Jing & Muqeet, Hafiz Abdul, 2023. "Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: A roadmap towards clean energy technologies," Renewable Energy, Elsevier, vol. 206(C), pages 1326-1335.
    3. Nordin, Nur Dalilah & Abdul Rahman, Hasimah, 2016. "A novel optimization method for designing stand alone photovoltaic system," Renewable Energy, Elsevier, vol. 89(C), pages 706-715.
    4. Carroquino, Javier & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2015. "Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops," Renewable Energy, Elsevier, vol. 76(C), pages 566-574.
    5. Ahmad, G.E., 2002. "Photovoltaic-powered rural zone family house in Egypt," Renewable Energy, Elsevier, vol. 26(3), pages 379-390.
    6. Yoza, Akihiro & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa, 2014. "Optimal capacity and expansion planning methodology of PV and battery in smart house," Renewable Energy, Elsevier, vol. 69(C), pages 25-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    2. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.
    4. Zhou, Jian & Tsianikas, Stamatis & Birnie, Dunbar P. & Coit, David W., 2019. "Economic and resilience benefit analysis of incorporating battery storage to photovoltaic array generation," Renewable Energy, Elsevier, vol. 135(C), pages 652-662.
    5. Tsianikas, Stamatis & Zhou, Jian & Birnie, Dunbar P. & Coit, David W., 2019. "Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems," Applied Energy, Elsevier, vol. 256(C).
    6. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    7. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    8. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    9. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    10. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    11. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    12. Wahyudi Sutopo & Ika Shinta Mardikaningsih & Roni Zakaria & Ahad Ali, 2020. "A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study," Energies, MDPI, vol. 13(3), pages 1-20, February.
    13. Tamer Khatib & Dhiaa Halboot Muhsen, 2020. "Optimal Sizing of Standalone Photovoltaic System Using Improved Performance Model and Optimization Algorithm," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    14. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    15. Kosai, Shoki & Yamasue, Eiji, 2018. "Cost-security analysis dedicated for the off-grid electricity system," Renewable Energy, Elsevier, vol. 115(C), pages 871-879.
    16. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    17. Baigali Erdenebat & Naomitsu Urasaki & Sergelen Byambaa, 2022. "A Strategy for Grid-Connected PV-Battery System of Mongolian Ger," Energies, MDPI, vol. 15(5), pages 1-13, March.
    18. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    19. Sergio Ignacio Serna-Garcés & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2016. "Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems," Energies, MDPI, vol. 9(4), pages 1-27, March.
    20. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6642-:d:1241056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.