Evaluation of Rooftop Photovoltaic Power Generation Potential Based on Deep Learning and High-Definition Map Image
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
- Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
- Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qi, Qingqing & Zhao, Jinghao & Tan, Zekun & Tao, Kejun & Zhang, Xiaoqing & Tian, Yajun, 2024. "Development assessment of regional rooftop photovoltaics based on remote sensing and deep learning," Applied Energy, Elsevier, vol. 375(C).
- Yu Xiao & Long Lin & Jun Ma & Maoqiang Bi, 2024. "Enhancing Rooftop Photovoltaic Segmentation Using Spatial Feature Reconstruction and Multi-Scale Feature Aggregation," Energies, MDPI, vol. 18(1), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
- Li, Qingyu & Krapf, Sebastian & Mou, Lichao & Shi, Yilei & Zhu, Xiao Xiang, 2024. "Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures," Applied Energy, Elsevier, vol. 374(C).
- Qi, Qingqing & Zhao, Jinghao & Tan, Zekun & Tao, Kejun & Zhang, Xiaoqing & Tian, Yajun, 2024. "Development assessment of regional rooftop photovoltaics based on remote sensing and deep learning," Applied Energy, Elsevier, vol. 375(C).
- Sun, Tao & Shan, Ming & Rong, Xing & Yang, Xudong, 2022. "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images," Applied Energy, Elsevier, vol. 315(C).
- Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
- Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
- Lodhi, Muhammad Kamran & Tan, Yumin & Wang, Xiaolu & Masum, Syed Muhammad & Nouman, Khan Muhammad & Ullah, Nasim, 2024. "Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach," Energy, Elsevier, vol. 304(C).
- Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
- Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
- Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
- Chen, Zhe & Yang, Bisheng & Zhu, Rui & Dong, Zhen, 2024. "City-scale solar PV potential estimation on 3D buildings using multi-source RS data: A case study in Wuhan, China," Applied Energy, Elsevier, vol. 359(C).
- Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
- Geng, Xiaotian & Cai, Senhong & Gou, Zhonghua, 2025. "Assessing building-integrated photovoltaic potential in dense urban areas using a multi-channel single-dimensional convolutional neural network model," Applied Energy, Elsevier, vol. 377(PD).
- Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
- Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
- Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
- Chavid Leewiraphan & Nipon Ketjoy & Prapita Thanarak, 2023. "Business Perspectives of Distributed System Operators for Solar Rooftop-as-a-Service," Energies, MDPI, vol. 17(1), pages 1-15, December.
- Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
- Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
- Zhu, Rui & Lau, Wing Sze & You, Linlin & Yan, Jinyue & Ratti, Carlo & Chen, Min & Wong, Man Sing & Qin, Zheng, 2024. "Multi-sourced data modelling of spatially heterogenous life-cycle carbon mitigation from installed rooftop photovoltaics: A case study in Singapore," Applied Energy, Elsevier, vol. 362(C).
More about this item
Keywords
solar energy; rooftop photovoltaics; deep learning; photovoltaic potential assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6563-:d:1238214. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.