IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6484-d1235580.html
   My bibliography  Save this article

Process Optimization and Biomethane Recovery from Anaerobic Digestion of Agro-Industry Wastes

Author

Listed:
  • Harjinder Kaur

    (Center for Energy & Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA
    Current Address: Office of the Agriculture Commissioner, San Joaquin County, Stockton, CA 95206, USA.)

  • Raghava R. Kommalapati

    (Center for Energy & Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA
    Department of Civil & Environmental Engineering, Prairie View A&M University, Prairie View, TX 77446, USA)

Abstract

Among the sustainable initiatives for renewable energy technologies, anaerobic digestion (AD) is a potential contender to replace fossil fuels. The anaerobic co-digestions of goat manure (GM) with sorghum (SG), cotton gin trash (CGT), and food waste (FW) having different mixing ratios, volumes, temperatures, and additives were optimized in single and two-stage bioreactors. The biochemical methane potential assays (having different mixing ratios of double and triple substrates) were run in 250 mL serum bottles in triplicates. The best-yielding ratio was up-scaled to fabricated 2 L bioreactors. The biodegradability, biomethane recovery, and process efficacy are discussed. The co-digestion of GM with SG in a 70:30 ratio yielded the highest biomethane of 239.3 ± 15.6 mL/g vs , and it was further up-scaled to a two-stage temperature-phased process supplemented with an anaerobic medium and fly ash (FA) in fabricated 2 L bioreactors. This system yielded the highest biomethane of 266.0 mL/g vs , having an anaerobic biodegradability of 67.3% in 70:30 GM:SG co-digestion supplemented with an anaerobic medium. The BMP of the FA-amended treatment may be lower because of its high Ca concentration of 205.74 ± 3.6. The liquid fraction of the effluents can be applied as N and P fertigation. The Ca concentration was found to be 24.3, 25.1, and 6.3 g/kg in GM and GM:SG (TS) and SG solid fractions, respectively, whereas K was found to be 26.6, 10.8, and 7.4 g/kg. The carbon to nitrogen ratio of solid fraction varied between 2.0 and 24.8 for return to the soils to enhance its quality. This study involving feedstock acquisition, characterization, and their anaerobic digestion optimization provides comprehensive information and may assist small farmers operating on-farm anaerobic digesters.

Suggested Citation

  • Harjinder Kaur & Raghava R. Kommalapati, 2023. "Process Optimization and Biomethane Recovery from Anaerobic Digestion of Agro-Industry Wastes," Energies, MDPI, vol. 16(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6484-:d:1235580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akobi, Chinaza & Yeo, Hyeongu & Hafez, Hisham & Nakhla, George, 2016. "Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass," Applied Energy, Elsevier, vol. 184(C), pages 548-559.
    2. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    3. Agblevor, F.A. & Cundiff, J.S. & Mingle, C. & Li, W., 2006. "Storage and characterization of cotton gin waste for ethanol production," Resources, Conservation & Recycling, Elsevier, vol. 46(2), pages 198-216.
    4. Jay N. Meegoda & Brian Li & Kush Patel & Lily B. Wang, 2018. "A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    5. Ayobami Orangun & Harjinder Kaur & Raghava R. Kommalapati, 2021. "Batch Anaerobic Co-Digestion and Biochemical Methane Potential Analysis of Goat Manure and Food Waste," Energies, MDPI, vol. 14(7), pages 1-14, April.
    6. Harjinder Kaur & Raghava R Kommalapati, 2021. "Biochemical Methane Potential and Kinetic Parameters of Goat Manure at Various Inoculum to Substrate Ratios," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charalampos Toufexis & Dimitrios-Orfeas Makris & Christos Vlachokostas & Alexandra V. Michailidou & Christos Mertzanakis & Athanasia Vachtsiavanou, 2024. "Bridging the Gap between Biowaste and Biomethane Production: A Systematic Review Meta-Analysis Methodological Approach," Sustainability, MDPI, vol. 16(15), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    2. Joisleen Ramírez & Euclides Deago & Arthur Mc Carty James Rivas, 2024. "Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions," Energies, MDPI, vol. 17(10), pages 1-18, May.
    3. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    4. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    5. Luis G. Cortés & J. Barbancho & D. F. Larios & J. D. Marin-Batista & A. F. Mohedano & C. Portilla & M. A. de la Rubia, 2022. "Full-Scale Digesters: Model Predictive Control with Online Kinetic Parameter Identification Strategy," Energies, MDPI, vol. 15(22), pages 1-23, November.
    6. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    7. Stefan Heiske & Linas Jurgutis & Zsófia Kádár, 2015. "Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters," Energies, MDPI, vol. 8(3), pages 1-15, March.
    8. Pérez-Rodríguez, N. & García-Bernet, D. & Domínguez, J.M., 2017. "Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production," Renewable Energy, Elsevier, vol. 107(C), pages 597-603.
    9. Tae-Bong Kim & Jun-Hyeong Lee & Young-Man Yoon, 2024. "Residence Time Reduction in Anaerobic Reactors: Investigating the Economic Benefits of Magnetite-Induced Direct Interspecies Electron Transfer Mechanism," Energies, MDPI, vol. 17(2), pages 1-13, January.
    10. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    11. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    12. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    14. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    16. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    17. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    18. Yongping Li & Jiaoning Zhu & Yun Tang & Xiangyuan Shi & Sumera Anwar & Juanling Wang & Li Gao & Jingxuan Zhang, 2023. "Impact of Varying Mass Concentrations of Ammonia Nitrogen on Biogas Production and System Stability of Anaerobic Fermentation," Agriculture, MDPI, vol. 13(8), pages 1-14, August.
    19. Shuhei Matsuda & Takahiro Yamato & Yoshiyuki Mochizuki & Yoshinori Sekiguchi & Takashi Ohtsuki, 2020. "Batch-Mode Analysis of Thermophilic Methanogenic Microbial Community Changes in the Overacidification Stage in Beverage Waste Treatment," IJERPH, MDPI, vol. 17(20), pages 1-13, October.
    20. Wei En Tan & Peng Yen Liew & Lian See Tan & Kok Sin Woon & Nor Erniza Mohammad Rozali & Wai Shin Ho & Jamian NorRuwaida, 2022. "Life Cycle Assessment and Techno-Economic Analysis for Anaerobic Digestion as Cow Manure Management System," Energies, MDPI, vol. 15(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6484-:d:1235580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.