IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6469-d1234946.html
   My bibliography  Save this article

Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use

Author

Listed:
  • Bill Vaneck Bot

    (Laboratory of Thermal and Environment, Advanced Teacher’s Training College for Technical Education, University of Douala-Cameroon, Douala P.O. Box 1872, Cameroon)

  • Petros J. Axaopoulos

    (Department of Mechanical Engineering, University of West Attica, Campus II, Thivon 250, 12244 Aegaleo, Athens, Greece)

  • Evangelos I. Sakellariou

    (Department of Mechanical Engineering, University of West Attica, Campus II, Thivon 250, 12244 Aegaleo, Athens, Greece)

  • Olivier Thierry Sosso

    (Laboratory of Thermal and Environment, Advanced Teacher’s Training College for Technical Education, University of Douala-Cameroon, Douala P.O. Box 1872, Cameroon)

  • Jean Gaston Tamba

    (Laboratory of Technology and Applied Sciences, University Institute of Technology, University of Douala, Douala P.O. Box 8698, Cameroon
    Laboratory of Transport and Applied Logistics, University Institute of Technology, University of Douala, Douala P.O. Box 8698, Cameroon)

Abstract

This paper presents a theoretical evaluation of the prices of mixed briquettes produced from coconut shells (CCS), banana peels (BNP), rattan waste (RWT), and sugarcane bagasse (SGC) and, on the other hand, an analysis of the economic viability of their use as a replacement for conventional household fuels (liquefied petroleum gas, fuelwood, and wood charcoal) in households in Cameroon. The investigation was carried out using the life cycle cost method on a typical household over a ten-year period with annual cooking energy requirements of 950 kWh th . The SGC–CCS and SGC–RWT mixed briquettes with ratios higher than 7.75% and 11.1%, respectively, have prices lower than EUR 0.063/kWh th . The Present Value of the Net Benefit is positive for the use of SGC–CCS and SGC–RWT mixed briquettes. The results show that by making the right mixes of residues, it is possible to obtain biomass briquettes that are less expensive than conventional fuels.

Suggested Citation

  • Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6469-:d:1234946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lubwama, Michael & Yiga, Vianney Andrew, 2017. "Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 111(C), pages 532-542.
    2. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    3. Garba, Ifeoluwa & Bellingham, Richard, 2021. "Energy poverty: Estimating the impact of solid cooking fuels on GDP per capita in developing countries - Case of sub-Saharan Africa," Energy, Elsevier, vol. 221(C).
    4. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    5. Alison Pye & Sara Ronzi & Bertrand Hugo Mbatchou Ngahane & Elisa Puzzolo & Atongno Humphrey Ashu & Daniel Pope, 2020. "Drivers of the Adoption and Exclusive Use of Clean Fuel for Cooking in Sub-Saharan Africa: Learnings and Policy Considerations from Cameroon," IJERPH, MDPI, vol. 17(16), pages 1-24, August.
    6. Jean Hugues Nlom & Aziz A. Karimov, 2015. "Modeling Fuel Choice among Households in Northern Cameroon," Sustainability, MDPI, vol. 7(8), pages 1-11, July.
    7. Ngusale, George K. & Luo, Yonghao & Kiplagat, Jeremiah K., 2014. "Briquette making in Kenya: Nairobi and peri-urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 749-759.
    8. Evangelos I. Sakellariou & Petros J. Axaopoulos & Bill Vaneck Bot & Ioannis E. Sarris, 2022. "Energy Performance Evaluation of a Solar PVT Thermal Energy Storage System Based on Small Size Borefield," Energies, MDPI, vol. 15(21), pages 1-19, October.
    9. Navalta, Carl John Louie G. & Banaag, Kristian Gregg C. & Raboy, Von Adrian O. & Go, Alchris W. & Cabatingan, Luis K. & Ju, Yi-Hsu, 2020. "Solid fuel from Co-briquetting of sugarcane bagasse and rice bran," Renewable Energy, Elsevier, vol. 147(P1), pages 1941-1958.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    2. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan & Nik Nor Rahimah Nik Ab Rahim, 2022. "Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    3. Pavla Fajfrlíková & Anna Brunerová & Hynek Roubík, 2020. "Analyses of Waste Treatment in Rural Areas of East Java with the Possibility of Low-Pressure Briquetting Press Application," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    4. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    5. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    6. Lubwama, Michael & Yiga, Vianney Andrew & Muhairwe, Frank & Kihedu, Joseph, 2020. "Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources," Renewable Energy, Elsevier, vol. 148(C), pages 1002-1016.
    7. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    8. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    9. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    10. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    11. Koech Cheruiyot & Ezekiel Lengaram & Mncedisi Siteleki, 2024. "South Africa’s Energy Landscape Amidst the Crisis: Unpacking Energy Sources and Drivers with 2022 South African Census Data," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    12. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    13. Anna Borkowska & Grzegorz Maj & Kamila E. Klimek & Magdalena Kapłan, 2024. "The Determination of Woody Biomass Resources and Their Energy Potential from Hazelnut Tree Cultivation," Energies, MDPI, vol. 17(18), pages 1-18, September.
    14. Phisamas Hwangdee & Singrun Charee & Watcharin Kheowkrai & Chaiyan Junsiri & Kittipong Laloon, 2022. "Application of the Simplex-Centroid Mixture Design to Biomass Charcoal Powder Formulation Ratio for Biomass Charcoal Briquettes," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    15. Muhammad Javeed Akhtar & Hafeez Ur Rehman & Qaisar Abbas, 2024. ""The promissory note at COP-21 of sustainable energy for all" Is it converging toward economic development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26557-26578, October.
    16. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    17. Okere, Kingsley Ikechukwu & Dimnwobi, Stephen Kelechi & Ekesiobi, Chukwunonso & Onuoha, Favour Chidinma, 2023. "Turning the tide on energy poverty in sub-Saharan Africa: Does public debt matter?," Energy, Elsevier, vol. 282(C).
    18. Alananga, Samwel Sanga & Igangula, Nurdin Husama, 2022. "Constrained cooking energy choices: Understanding up-the-ladder stacking behaviour in Dar es Salaam Tanzania," Energy Policy, Elsevier, vol. 168(C).
    19. Dal-Bó, Vanessa & Lira, Taisa & Arrieche, Leonardo & Bacelos, Marcelo, 2019. "Process synthesis for coffee husks to energy using hierarchical approaches," Renewable Energy, Elsevier, vol. 142(C), pages 195-206.
    20. Dhikra Derbal & Abdallah Abderrezak & Seif Eddine Chehaidia & Majdi T. Amin & Mohamed I. Mosaad & Tarek A. Abdul-Fattah, 2023. "Parametric Study and Optimization of No-Blocking Heliostat Field Layout," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6469-:d:1234946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.