IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6436-d1233776.html
   My bibliography  Save this article

The Application of Barocaloric Solid-State Cooling in the Cold Food Chain for Carbon Footprint Reduction

Author

Listed:
  • Luca Cirillo

    (Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy)

  • Adriana Greco

    (Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy)

  • Claudia Masselli

    (Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy)

Abstract

In this paper, the application of solid-state cooling based on the barocaloric effect in the cold food supply chain is investigated. Barocaloric solid-state technology is applied to the final links of the cold food supply chain regarding the steps of retail and domestic conservation. In this context, effective barocaloric cooling entails the refrigeration of food at 5 °C (273 K) and as such is a promising cooling technology due to its energy efficiency and environmental friendliness. The categories of food involved in this investigation are meat and fresh food products like soft cheese, yogurt, and milk. The energy performance of the barocaloric system is analyzed and compared with a commercial vapor compression refrigerator of a similar size, both operating using R600a under the same working conditions. Based on the results of this comparison, it is concluded that barocaloric cooling is a favorable technology for application in the final links of the cold food supply chain if the system operates in an ABR cycle at frequencies between 1.25 and 1.50 Hz with a regenerator comprising acetoxy silicone rubber as the solid-state refrigerant and a 50%EG–50% water mixture as the heat transfer fluid flowing at an optimal velocity of 0.15 m s −1 . Thus, an appropriate tradeoff between the temperature span, cooling power, and coefficient of performance is guaranteed. Under these conditions, the barocaloric system outperforms the domestic vapor compression cooler operating using R600a.

Suggested Citation

  • Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "The Application of Barocaloric Solid-State Cooling in the Cold Food Chain for Carbon Footprint Reduction," Energies, MDPI, vol. 16(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6436-:d:1233776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    2. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2018. "Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator," Energy, Elsevier, vol. 165(PA), pages 439-455.
    3. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
    4. Ali Alahmer & Malik Al-Amayreh & Ahmad O. Mostafa & Mohammad Al-Dabbas & Hegazy Rezk, 2021. "Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives," Energies, MDPI, vol. 14(15), pages 1-26, July.
    5. Cong Jiao & Zeyu Li, 2023. "An Updated Review of Solar Cooling Systems Driven by Photovoltaic–Thermal Collectors," Energies, MDPI, vol. 16(14), pages 1-34, July.
    6. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    7. Nora Bachmann & Daniel Schwarz & David Bach & Olaf Schäfer-Welsen & Thomas Koch & Kilian Bartholomé, 2022. "Modeling of an Elastocaloric Cooling System for Determining Efficiency," Energies, MDPI, vol. 15(14), pages 1-14, July.
    8. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    9. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    11. Mubarak Ismail & Metkel Yebiyo & Issa Chaer, 2021. "A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies," Energies, MDPI, vol. 14(2), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur S. Bartosik, 2024. "Advances in Numerical Heat Transfer and Fluid Flow," Energies, MDPI, vol. 17(9), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    2. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    3. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    4. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    5. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    6. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    7. Ujué Fresán & Maximino Alfredo Mejia & Winston J Craig & Karen Jaceldo-Siegl & Joan Sabaté, 2019. "Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    8. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    9. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    10. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    11. Susana G. Azevedo & Minelle E. Silva & João C. O. Matias & Gustavo P. Dias, 2018. "The Influence of Collaboration Initiatives on the Sustainability of the Cashew Supply Chain," Sustainability, MDPI, vol. 10(6), pages 1-29, June.
    12. Tjärnemo, Heléne & Södahl, Liv, 2015. "Swedish food retailers promoting climate smarter food choices—Trapped between visions and reality?," Journal of Retailing and Consumer Services, Elsevier, vol. 24(C), pages 130-139.
    13. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    14. Bonnet, Céline & Bouamra-Mechemache, Zohra & Réquillart, Vincent & Treich, Nicolas, 2020. "Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare," Food Policy, Elsevier, vol. 97(C).
    15. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    16. Panzone, Luca A. & Ulph, Alistair & Zizzo, Daniel John & Hilton, Denis & Clear, Adrian, 2021. "The impact of environmental recall and carbon taxation on the carbon footprint of supermarket shopping," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    17. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    18. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    19. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    20. Halloran, Afton & Clement, Jesper & Kornum, Niels & Bucatariu, Camelia & Magid, Jakob, 2014. "Addressing food waste reduction in Denmark," Food Policy, Elsevier, vol. 49(P1), pages 294-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6436-:d:1233776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.