IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6716-d465115.html
   My bibliography  Save this article

Analytical-Numerical Approach to the Skin and Proximity Effect in Lines with Round Parallel Wires

Author

Listed:
  • Paweł Jabłoński

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

  • Dariusz Kusiak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

  • Tomasz Szczegielniak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

Abstract

Power and communication lines with round wires are often used in electrical engineering. The skin and proximity effects affect the current density distribution and increase resistances and energy losses. Many approaches were proposed to calculate the effects and related quantities. One of the simplest approximate closed solutions neglects the dimensions of neighboring wires. In this paper, a solution to this problem is proposed based on the method of successive reactions. In this context, the solution with substitutive filaments is considered as the first approximation of the true solution. Several typical arrangements of wires in single-phase communication lines or three-phase bus ducts are considered to detect the limits of applicability of the first approximation. The error of the first approximation grows with wire radius to skin depth ratio and wire radius to wire spacing ratio. When the wire radius to skin depth ratio is up to 1, and the gap between the wires is above the wire radius, the error is at a level of 1%. However, lowering the distance and/or skin depth leads to a much larger error in the first approximation.

Suggested Citation

  • Paweł Jabłoński & Dariusz Kusiak & Tomasz Szczegielniak, 2020. "Analytical-Numerical Approach to the Skin and Proximity Effect in Lines with Round Parallel Wires," Energies, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6716-:d:465115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Jabłoński & Tomasz Szczegielniak & Dariusz Kusiak & Zygmunt Piątek, 2019. "Analytical–Numerical Solution for the Skin and Proximity Effects in Two Parallel Round Conductors," Energies, MDPI, vol. 12(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Zaręba & Tomasz Szczegielniak & Paweł Jabłoński, 2023. "Influence of the Skin and Proximity Effects on the Thermal Field in a System of Two Parallel Round Conductors," Energies, MDPI, vol. 16(17), pages 1-20, September.
    2. Artur Cywiński & Krzysztof Chwastek & Dariusz Kusiak & Paweł Jabłoński, 2020. "Optimization of Spatial Configuration of Multistrand Cable Lines," Energies, MDPI, vol. 13(22), pages 1-22, November.
    3. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    4. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.
    5. Paweł Jabłoński & Dariusz Kusiak & Tomasz Szczegielniak & Zygmunt Piątek, 2020. "The Proximity Effect in Twin Line with Round Conductors Placed in Conductive Medium," Energies, MDPI, vol. 13(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6716-:d:465115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.