IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6178-d1225670.html
   My bibliography  Save this article

Review: The Energy Implications of Averting Climate Change Catastrophe

Author

Listed:
  • Patrick Moriarty

    (Department of Design, Monash University, Caulfield Campus, P.O. Box 197, Caulfield East, VIC 3145, Australia)

  • Damon Honnery

    (Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, P.O. Box 31, Clayton, VIC 3800, Australia)

Abstract

Conventional methods of climate change (CC) mitigation have not ‘bent the curve’ of steadily rising annual anthropic CO 2 emissions or atmospheric concentrations of greenhouse gases. This study reviews the present position and likely future of such methods, using the recently published literature with a global context. It particularly looks at how fast they could be implemented, given the limited time available for avoiding catastrophic CC (CCC). This study then critically examines solar geoengineering, an approach often viewed as complementary to conventional mitigation. Next, this review introduces equity considerations and shows how these even further shorten the available time for effective action for CC mitigation. The main findings are as follows. Conventional mitigation approaches would be implemented too slowly to be of much help in avoiding CCC, partly because some suggested technologies are infeasible, while others are either of limited technical potential or, like wind and solar energy, cannot be introduced fast enough. Due to these problems, solar geoengineering is increasingly advocated for as a quick-acting and effective solution. However, it could have serious side effects, and, given that there would be winners and losers at the international level as well as at the more regional level, political opposition may make it very difficult to implement. The conclusion is that global energy consumption itself must be rapidly reduced to avoid catastrophic climate change, which requires strong policy support.

Suggested Citation

  • Patrick Moriarty & Damon Honnery, 2023. "Review: The Energy Implications of Averting Climate Change Catastrophe," Energies, MDPI, vol. 16(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6178-:d:1225670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferroni, Ferruccio & Hopkirk, Robert J., 2016. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 94(C), pages 336-344.
    2. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    3. Vijaya Ramachandran, 2022. "Blanket bans on fossil fuels hurt women and lower-income countries," Nature, Nature, vol. 607(7917), pages 9-9, July.
    4. Alexandra Witze, 2022. "Extreme heatwaves: surprising lessons from the record warmth," Nature, Nature, vol. 608(7923), pages 464-465, August.
    5. Elizabeth G. Hanna & Peter W. Tait, 2015. "Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming," IJERPH, MDPI, vol. 12(7), pages 1-41, July.
    6. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    7. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    8. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    9. Johan Rockström & Joyeeta Gupta & Dahe Qin & Steven J. Lade & Jesse F. Abrams & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Govindasamy Bala & Stuart E. Bunn & Daniel Ciobanu & Fabric, 2023. "Safe and just Earth system boundaries," Nature, Nature, vol. 619(7968), pages 102-111, July.
    10. O'Sullivan, Michael & Gravatt, Michael & Popineau, Joris & O'Sullivan, John & Mannington, Warren & McDowell, Julian, 2021. "Carbon dioxide emissions from geothermal power plants," Renewable Energy, Elsevier, vol. 175(C), pages 990-1000.
    11. Miryam Naddaf, 2023. "The world faces a water crisis — 4 powerful charts show how," Nature, Nature, vol. 615(7954), pages 774-775, March.
    12. Patrick Moriarty & Damon Honnery, 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?," Energies, MDPI, vol. 15(19), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Moriarty & Damon Honnery, 2023. "Are Energy Reductions Compatible with Economic Growth?," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    2. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    3. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    4. Patrick Moriarty & Damon Honnery, 2019. "Energy Accounting for a Renewable Energy Future," Energies, MDPI, vol. 12(22), pages 1-16, November.
    5. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    6. Wu, Tong & Rocha, Juan C. & Berry, Kevin & Chaigneau, Tomas & Hamann, Maike & Lindkvist, Emilie & Qiu, Jiangxiao & Schill, Caroline & Shepon, Alon & Crépin, Anne-Sophie & Folke, Carl, 2024. "Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment," World Development, Elsevier, vol. 178(C).
    7. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    8. Filipe Duarte Santos & Tim O’Riordan & Miguel Rocha de Sousa & Jiesper Strandsbjerg Tristan Pedersen, 2023. "The Six Critical Determinants That May Act as Human Sustainability Boundaries on Climate Change Action," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    9. Lamorlette, A., 2023. "A coupled model of global energy production and ERoEI applied to photovoltaic and wind, an estimation of net production," Energy, Elsevier, vol. 278(PB).
    10. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    11. Alfredsson, Eva C. & Malmaeus, J. Mikael, 2019. "Real capital investments and sustainability - The case of Sweden," Ecological Economics, Elsevier, vol. 161(C), pages 216-224.
    12. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    13. Patrick Moriarty & Damon Honnery, 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?," Energies, MDPI, vol. 15(19), pages 1-16, October.
    14. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    15. Svartzman, Romain & Dron, Dominique & Espagne, Etienne, 2019. "From ecological macroeconomics to a theory of endogenous money for a finite planet," Ecological Economics, Elsevier, vol. 162(C), pages 108-120.
    16. Patrick Moriarty & Damon Honnery, 2023. "Rethinking Notions of Energy Efficiency in a Global Context," Energies, MDPI, vol. 16(12), pages 1-14, June.
    17. Pickard, William F., 2017. "A simple lower bound on the EROI of photovoltaic electricity generation," Energy Policy, Elsevier, vol. 107(C), pages 488-490.
    18. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    19. Roberto Leonardo Rana & Mariarosaria Lombardi & Pasquale Giungato & Caterina Tricase, 2020. "Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers," Administrative Sciences, MDPI, vol. 10(2), pages 1-17, March.
    20. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6178-:d:1225670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.