IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5823-d1211327.html
   My bibliography  Save this article

A Multiphysics-Multiscale Model for Particle–Binder Interactions in Electrode of Lithium-Ion Batteries

Author

Listed:
  • Yasir Ali

    (Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Science and Technology, Risalpur 24090, Pakistan)

  • Imran Shah

    (Department of Mechanical Engineering, International Islamic University (IIUI), Islamabad 44000, Pakistan
    Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan)

  • Tariq Amin Khan

    (Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Science and Technology, Risalpur 24090, Pakistan)

  • Noman Iqbal

    (Department of Mechanical, Robotics and Energy Engineering Dongguk University, Seoul 04620, Republic of Korea)

Abstract

Understanding the electrochemical and mechanical degradations inside the electrodes of lithium-ion battery is crucial for the design of robust electrodes. A typical lithium-ion battery electrode consists of active particles enclosed with conductive binder and an electrolyte. During the charging and discharging process, these adjacent materials create a mechanical confinement which suppresses the expansion and contraction of the particles and affects overall performance. The electrochemical and mechanical response mutually affect each other. The particle level expansion/contraction alters the electrochemical response at the electrode level. In return, the electrode level kinetics affect the stress at the particle level. In this paper, we developed a multiphysics–multiscale model to analyze the electrochemical and mechanical responses at both the particle and cell level. The 1D Li-ion battery model is fully coupled with 2D representative volume element (RVE) model, where the particles are covered in binder layers and bridged through the binder. The simulation results show that when the binder constraint is incorporated, the particles achieve a lower surface state of charge during charging. Further, the cell charging time increases by 7.4% and the discharge capacity reduces by 1.4% for 1 C-rate charge/discharge. In addition, mechanical interaction creates inhomogeneous stress inside the particle, which results in particle fracture and particle–binder debonding. The developed model will provide insights into the mechanisms of battery degradation for improving the performance of Li-ion batteries.

Suggested Citation

  • Yasir Ali & Imran Shah & Tariq Amin Khan & Noman Iqbal, 2023. "A Multiphysics-Multiscale Model for Particle–Binder Interactions in Electrode of Lithium-Ion Batteries," Energies, MDPI, vol. 16(15), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5823-:d:1211327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    2. Joseph Paul Baboo & Mudasir A. Yatoo & Matthew Dent & Elaheh Hojaji Najafabadi & Constantina Lekakou & Robert Slade & Steven J. Hinder & John F. Watts, 2022. "Exploring Different Binders for a LiFePO 4 Battery, Battery Testing, Modeling and Simulations," Energies, MDPI, vol. 15(7), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    2. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Akash Samanta & Sheldon S. Williamson, 2021. "A Comprehensive Review of Lithium-Ion Cell Temperature Estimation Techniques Applicable to Health-Conscious Fast Charging and Smart Battery Management Systems," Energies, MDPI, vol. 14(18), pages 1-25, September.
    4. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    5. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    7. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    8. Wenwei, Wang & Yiding, Li & Cheng, Lin & Yuefeng, Su & Sheng, Yang, 2019. "State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Wang, Lubing & Li, Jianping & Chen, Jiaying & Duan, Xudong & Li, Binqi & Li, Jiani, 2023. "Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation," Applied Energy, Elsevier, vol. 351(C).
    10. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    11. Xu, Dongxin & Pan, Yongjun & Zhang, Xiaoxi & Dai, Wei & Liu, Binghe & Shuai, Qi, 2024. "Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact," Energy, Elsevier, vol. 290(C).
    12. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    13. Pan, Yongjun & Zhang, Xiaoxi & Liu, Yue & Wang, Huacui & Cao, Yangzheng & Liu, Xin & Liu, Binghe, 2022. "Dynamic behavior prediction of modules in crushing via FEA-DNN technique for durable battery-pack system design," Applied Energy, Elsevier, vol. 322(C).
    14. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    15. Qingxia Yang & Jun Xu & Binggang Cao & Xiuqing Li, 2017. "A simplified fractional order impedance model and parameter identification method for lithium-ion batteries," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    16. JiYang Xu & Jian Ma & Xuan Zhao & Hao Chen & Bin Xu & XueQin Wu, 2020. "Detection Technology for Battery Safety in Electric Vehicles: A Review," Energies, MDPI, vol. 13(18), pages 1-19, September.
    17. Jingyi Chen & Genwei Wang & Hui Song & Bin Wang & Guiying Wu & Jianyin Lei, 2022. "Stress and Displacement of Cylindrical Lithium-Ion Power Battery during Charging and Discharging," Energies, MDPI, vol. 15(21), pages 1-22, November.
    18. Chen, Haodong & Kalamaras, Evangelos & Abaza, Ahmed & Tripathy, Yashraj & Page, Jason & Barai, Anup, 2023. "Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions," Applied Energy, Elsevier, vol. 349(C).
    19. Li, Honggang & Zhou, Dian & Zhang, Meihe & Liu, Binghe & Zhang, Chao, 2023. "Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse," Energy, Elsevier, vol. 263(PE).
    20. Genwei Wang & Xuanfu Guo & Jingyi Chen & Pengfei Han & Qiliang Su & Meiqing Guo & Bin Wang & Hui Song, 2023. "Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse," Energies, MDPI, vol. 16(17), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5823-:d:1211327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.