IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i2p724-734.html
   My bibliography  Save this article

Distributed energy resources and benefits to the environment

Author

Listed:
  • Akorede, Mudathir Funsho
  • Hizam, Hashim
  • Pouresmaeil, Edris

Abstract

The recently released report of the International Energy Outlook (IEO2009) projects an increase of 44% in the world energy demand from 2006 to 2030, and 77% rise in the net electricity generation worldwide in the same period. However, threatening in the said report is that 80% of the total generation in 2030 would be produced from fossil fuels. This global dependence on fossil fuels is dangerous to our environment in terms of their emissions unless specific policies and measures are put in place. Nevertheless, recent research reveals that a reduction in the emissions of these gases is possible with widespread adoption of distributed generation (DG) technologies that feed on renewable energy sources, in the generation of electric power. This paper gives a detailed overview of distributed energy resources technologies, and also discusses the devastating impacts of the conventional power plants feeding on fossil fuels to our environment. The study finally justifies how DG technologies could substantially reduce greenhouse gas emissions when fully adopted; hence, reducing the public concerns over human health risks caused by the conventional method of electricity generation.

Suggested Citation

  • Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:2:p:724-734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00256-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    2. Zhu, Fahua & Zheng, Youfei & Guo, Xulin & Wang, Sheng, 2005. "Environmental impacts and benefits of regional power grid interconnections for China," Energy Policy, Elsevier, vol. 33(14), pages 1797-1805, September.
    3. Fridleifsson, Ingvar B., 2001. "Geothermal energy for the benefit of the people," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 299-312, September.
    4. Strachan, Neil & Farrell, Alexander, 2006. "Emissions from distributed vs. centralized generation: The importance of system performance," Energy Policy, Elsevier, vol. 34(17), pages 2677-2689, November.
    5. Hadjipaschalis, Ioannis & Kourtis, George & Poullikkas, Andreas, 2009. "Assessment of oxyfuel power generation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2637-2644, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    2. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    3. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    4. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    5. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    6. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    7. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    8. Alejandro López-González & Bruno Domenech & Laia Ferrer-Martí, 2021. "Sustainability Evaluation of Rural Electrification in Cuba: From Fossil Fuels to Modular Photovoltaic Systems: Case Studies from Sancti Spiritus Province," Energies, MDPI, vol. 14(9), pages 1-17, April.
    9. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    11. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Myung Lang Yoo & Yong Ho Park & Young-Kwon Park & Sung Hoon Park, 2016. "Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst," Energies, MDPI, vol. 9(3), pages 1-9, March.
    13. Nakomcic-Smaragdakis, Branka & Dvornic, Tijana & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis and possible geothermal energy utilization in a municipality of Panonian Basin of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 940-951.
    14. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    15. Siler-Evans, Kyle & Morgan, M. Granger & Azevedo, Inês Lima, 2012. "Distributed cogeneration for commercial buildings: Can we make the economics work?," Energy Policy, Elsevier, vol. 42(C), pages 580-590.
    16. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    17. Demirbas, Ayhan, 2008. "Importance of biomass energy sources for Turkey," Energy Policy, Elsevier, vol. 36(2), pages 834-842, February.
    18. Cherry, Christopher & Weinert, Jonathan & Ma, Chaktan, 2007. "The Environmental Impacts of Electric Bikes in Chinese Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4zg3b4d6, Institute of Transportation Studies, UC Berkeley.
    19. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    20. Luiza Ossowska & Dorota Janiszewska & Natalia Bartkowiak-Bakun & Grzegorz Kwiatkowski, 2020. "Energy Consumption Versus Greenhouse Gas Emissions in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 185-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:2:p:724-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.