IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5729-d1207732.html
   My bibliography  Save this article

Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi 12 Alloy

Author

Listed:
  • Chaomurilige

    (Global Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, Germany)

  • Geng Qiao

    (Global Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, Germany)

  • Peng Zhao

    (Jining Electric Power Supply Company, State Grid Shandong Electric Power Company, Jining 272000, China)

  • Yang Li

    (Jining Electric Power Supply Company, State Grid Shandong Electric Power Company, Jining 272000, China)

  • Yongliang Li

    (Birmingham Center for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

This paper explores the potential of thermal storage as an energy storage technology with cost advantages. The study uses numerical simulations to investigate the impact of adding porous material to the HTF side during solidification to improve the heat transfer effect of TES using AlSi 12 alloy as the phase-change material. The research also examines the effects of adding porous dielectric materials and increasing air velocity on the discharge temperature, discharge power, and discharge time of high-temperature phase-change energy storage systems. The study found that the temperature difference of the PCM (increased), solidification time (reduced more than 85%), the outlet temperature of the air, and heat discharge power of the LHS did not vary significantly across different porous materials (copper foam, nickel foam, and silicon carbide foam) added to the HTF tube. These findings offer important information for the design of high-temperature phase-change energy storage devices and can guide future developments in this field.

Suggested Citation

  • Chaomurilige & Geng Qiao & Peng Zhao & Yang Li & Yongliang Li, 2023. "Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi 12 Alloy," Energies, MDPI, vol. 16(15), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5729-:d:1207732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, P. & Ma, F. & Xiao, X., 2016. "Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system," Applied Energy, Elsevier, vol. 173(C), pages 255-271.
    2. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    3. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    4. Li, Qi & Qiao, Geng & Mura, Ernesto & Li, Chuan & Fischer, Ludger & Ding, Yulong, 2020. "Experimental and numerical studies of a fatty acid based phase change dispersion for enhancing cooling of high voltage electrical devices," Energy, Elsevier, vol. 198(C).
    5. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    6. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dacheng Li & Yulong Ding & Peilun Wang & Shuhao Wang & Hua Yao & Jihong Wang & Yun Huang, 2019. "Integrating Two-Stage Phase Change Material Thermal Storage for Cascaded Waste Heat Recovery of Diesel-Engine-Powered Distributed Generation Systems: A Case Study," Energies, MDPI, vol. 12(11), pages 1-20, June.
    2. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    3. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. David W. MacPhee & Mustafa Erguvan, 2020. "Thermodynamic Analysis of a High-Temperature Latent Heat Thermal Energy Storage System," Energies, MDPI, vol. 13(24), pages 1-19, December.
    6. Li, Dacheng & Wang, Jihong & Ding, Yulong & Yao, Hua & Huang, Yun, 2019. "Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage," Applied Energy, Elsevier, vol. 236(C), pages 1168-1182.
    7. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    8. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    9. Bruno, August & Weber, Paige & Yates, Andrew J., 2023. "Can Bitcoin mining increase renewable electricity capacity?," Resource and Energy Economics, Elsevier, vol. 74(C).
    10. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    11. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    12. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Oosthuizen, Anna Maria & Inglesi-Lotz, Roula & Thopil, George Alex, 2022. "The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries," Energy, Elsevier, vol. 238(PB).
    14. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    15. Mara Madaleno & Manuel Carlos Nogueira, 2023. "How Renewable Energy and CO 2 Emissions Contribute to Economic Growth, and Sustainability—An Extensive Analysis," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    16. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    17. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    18. Riza Radmehr & Samira Shayanmehr & Ernest Baba Ali & Elvis Kwame Ofori & Elżbieta Jasińska & Michał Jasiński, 2022. "Exploring the Nexus of Renewable Energy, Ecological Footprint, and Economic Growth through Globalization and Human Capital in G7 Economics," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    19. Raphael Calel & Jonathan Colmer & Antoine Dechezleprêtre & Matthieu Glachant, 2021. "Do Carbon Offsets Offset Carbon?," CESifo Working Paper Series 9368, CESifo.
    20. Łukasz Nazarko & Eigirdas Žemaitis & Łukasz Krzysztof Wróblewski & Karel Šuhajda & Magdalena Zajączkowska, 2022. "The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level," Energies, MDPI, vol. 15(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5729-:d:1207732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.