IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1425-d750288.html
   My bibliography  Save this article

The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level

Author

Listed:
  • Łukasz Nazarko

    (Faculty of Engineering Management, Bialystok University of Technology, 15-351 Białystok, Poland)

  • Eigirdas Žemaitis

    (ISM University of Management and Economics, LT-01304 Vilnius, Lithuania)

  • Łukasz Krzysztof Wróblewski

    (Faculty of Applied Sciences, WSB University in Dabrowa Gornicza, 41-300 Dąbrowa Górnicza, Poland)

  • Karel Šuhajda

    (Faculty of Civil Engineering, Institute of Building Structures, Brno University of Technology, 601 90 Brno, Czech Republic)

  • Magdalena Zajączkowska

    (Department of European Studies and Economic Integration, Cracow University of Economics, 31-510 Cracow, Poland)

Abstract

In the last years, the fact of anthropogenic impact on climate change taking place in the world has become indisputable. Both countries and international organizations have taken steps to reduce GHG emissions, move to a low-carbon economy and implement solutions that reduce human impact on the environment. The EU, by intensifying its activities, has also prepared a strategy known as the European Green Deal. In implementing the EGD, it is important to analyze the impact of energy development in energy-intensive sectors of the economy (industry, transport, agriculture, services and other cores) on atmospheric pollution. Energy development is understood as the energy consumption percentage from all its consumption. In the article, complex correlation–regression analysis was implemented, which included not only energy development impact on the CO 2 emissions level (i.e., production-based CO 2 efficiency), but also its impact on economic growth. The research was conducted for the EU euro area countries. It was determined that the strongest positive correlation is to be found in the transport sector, which implies that with an increase in energy consumption in that sector, production-based CO 2 efficiency is increasing. On the other hand, this increment in efficiency was relatively small and was achieved with the rapid growth of the energy consumption. The implemented research confirmed that the transportation sector is the one which is polluting the atmosphere the most with CO 2 emissions in the Eurozone. The results of the implemented research could be used for the formation of targeted measures for the green growth strategy implementation, and also for ECB and EIB to support “green” projects.

Suggested Citation

  • Łukasz Nazarko & Eigirdas Žemaitis & Łukasz Krzysztof Wróblewski & Karel Šuhajda & Magdalena Zajączkowska, 2022. "The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level," Energies, MDPI, vol. 15(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1425-:d:750288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiucheng Li & Jacob Cherian & Malik Shahzad Shabbir & Muhammad Safdar Sial & Jing Li & Ioana Mester & Alina Badulescu, 2021. "Exploring the Relationship between Renewable Energy Sources and Economic Growth. The Case of SAARC Countries," Energies, MDPI, vol. 14(3), pages 1-14, January.
    2. Michael A. Toman & Barbora Jemelkova, 2003. "Energy and Economic Development: An Assessment of the State of Knowledge," The Energy Journal, , vol. 24(4), pages 93-112, October.
    3. Gozgor, Giray & Lau, Chi Keung Marco & Lu, Zhou, 2018. "Energy consumption and economic growth: New evidence from the OECD countries," Energy, Elsevier, vol. 153(C), pages 27-34.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    6. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    7. Enrique Moral-Benito, 2012. "Determinants of Economic Growth: A Bayesian Panel Data Approach," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 566-579, May.
    8. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    9. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    10. Soytas, Ugur & Sari, Ramazan, 2006. "Energy consumption and income in G-7 countries," Journal of Policy Modeling, Elsevier, vol. 28(7), pages 739-750, October.
    11. Robert J. Barro, 2003. "Determinants of Economic Growth in a Panel of Countries," Annals of Economics and Finance, Society for AEF, vol. 4(2), pages 231-274, November.
    12. Mahadevan, Renuka & Asafu-Adjaye, John, 2007. "Energy consumption, economic growth and prices: A reassessment using panel VECM for developed and developing countries," Energy Policy, Elsevier, vol. 35(4), pages 2481-2490, April.
    13. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    14. Narayan, Paresh Kumar & Smyth, Russell, 2009. "Multivariate granger causality between electricity consumption, exports and GDP: Evidence from a panel of Middle Eastern countries," Energy Policy, Elsevier, vol. 37(1), pages 229-236, January.
    15. Jun, Wen & Mughal, Nafeesa & Zhao, Jin & Shabbir, Malik Shahzad & Niedbała, Gniewko & Jain, Vipin & Anwar, Ahsan, 2021. "Does globalization matter for environmental degradation? Nexus among energy consumption, economic growth, and carbon dioxide emission," Energy Policy, Elsevier, vol. 153(C).
    16. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    17. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    18. Acaravci, Ali & Ozturk, Ilhan, 2010. "Electricity consumption-growth nexus: Evidence from panel data for transition countries," Energy Economics, Elsevier, vol. 32(3), pages 604-608, May.
    19. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    20. Chiou-Wei, Song Zan & Chen, Ching-Fu & Zhu, Zhen, 2008. "Economic growth and energy consumption revisited -- Evidence from linear and nonlinear Granger causality," Energy Economics, Elsevier, vol. 30(6), pages 3063-3076, November.
    21. Steven Sorrell, 2010. "Energy, Economic Growth and Environmental Sustainability: Five Propositions," Sustainability, MDPI, vol. 2(6), pages 1-26, June.
    22. Lee, Chien-Chiang, 2006. "The causality relationship between energy consumption and GDP in G-11 countries revisited," Energy Policy, Elsevier, vol. 34(9), pages 1086-1093, June.
    23. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    24. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    25. Apergis, Nicholas & Payne, James E., 2011. "A dynamic panel study of economic development and the electricity consumption-growth nexus," Energy Economics, Elsevier, vol. 33(5), pages 770-781, September.
    26. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).
    27. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    28. Baranzini, Andrea & Weber, Sylvain & Bareit, Markus & Mathys, Nicole A., 2013. "The causal relationship between energy use and economic growth in Switzerland," Energy Economics, Elsevier, vol. 36(C), pages 464-470.
    29. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    30. Squalli, Jay, 2007. "Electricity consumption and economic growth: Bounds and causality analyses of OPEC members," Energy Economics, Elsevier, vol. 29(6), pages 1192-1205, November.
    31. Sharma, Susan Sunila, 2010. "The relationship between energy and economic growth: Empirical evidence from 66 countries," Applied Energy, Elsevier, vol. 87(11), pages 3565-3574, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Jaworski & Maksymilian Mądziel & Hubert Kuszewski, 2022. "Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions," Energies, MDPI, vol. 15(6), pages 1-14, March.
    2. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    3. Dolge, Kristiāna & Barisa, Aiga & Kirsanovs, Vladimirs & Blumberga, Dagnija, 2023. "The status quo of the EU transport sector: Cross-country indicator-based comparison and policy evaluation," Applied Energy, Elsevier, vol. 334(C).
    4. Monika Stoma & Agnieszka Dudziak, 2023. "Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland," Energies, MDPI, vol. 16(20), pages 1-20, October.
    5. Aziz, Ghazala & Sarwar, Suleman & Waheed, Rida & Khan, Mohd Saeed, 2023. "Significance of hydrogen energy to control the environmental gasses in light of COP26: A case of European Countries," Resources Policy, Elsevier, vol. 80(C).
    6. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & Włodzimierz Sroka & Yuriy Fedun & Romualdas Ginevičius & Joanna Cygler, 2022. "CO 2 Emissions and Macroeconomic Indicators: Analysis of the Most Polluted Regions in the World," Energies, MDPI, vol. 15(8), pages 1-22, April.
    7. Irina Pilvere & Aleksejs Nipers & Aija Pilvere, 2022. "Evaluation of the European Green Deal Policy in the Context of Agricultural Support Payments in Latvia," Agriculture, MDPI, vol. 12(12), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romualdas Ginevičius & Gracjana Noga & Eigirdas Žemaitis & Barbara Piontek & Karel Šuhajda, 2021. "Comparative Assessment of the Impact of Electricity Consumption in Different Economic Sectors on the Economic Development of the EU Member States," Energies, MDPI, vol. 14(24), pages 1-14, December.
    2. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    3. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    4. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid, 2013. "What is MENA Region Initially Needed: Grow Output or Mitigate CO2 Emissions?," MPRA Paper 48859, University Library of Munich, Germany, revised 05 Aug 2013.
    5. Shahateet, Mohammed Issa & Al-Majali, Khalid Ali & Al-Hahabashneh, Fedel, 2014. "Causality and Cointegration between Economic Growth and Energy Consumption: Econometric Evidence from Jordan," MPRA Paper 59067, University Library of Munich, Germany, revised Oct 2014.
    6. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    7. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    8. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    9. Klodian Mu o & Enzo Valentini & Stefano Lucarelli, 2021. "The Relationships between GDP growth, Energy Consumption, Renewable Energy Production and CO2 Emissions in European Transition Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 362-373.
    10. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid & Chaibi, Anissa, 2014. "What does MENA region initially need: Grow output or mitigate CO2 emissions?," Economic Modelling, Elsevier, vol. 38(C), pages 270-281.
    11. Sudeshna Ghosh, 2019. "Environmental Pollution, Income Inequality, and Household Energy Consumption: Evidence from the United Kingdom," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-31, June.
    12. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    13. repec:ipg:wpaper:2014-529 is not listed on IDEAS
    14. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    15. Dagher, Leila & Yacoubian, Talar, 2012. "The causal relationship between energy consumption and economic growth in Lebanon," Energy Policy, Elsevier, vol. 50(C), pages 795-801.
    16. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    17. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    18. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    19. Doytch, Nadia & Narayan, Seema, 2021. "Does transitioning towards renewable energy accelerate economic growth? An analysis of sectoral growth for a dynamic panel of countries," Energy, Elsevier, vol. 235(C).
    20. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    21. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1425-:d:750288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.