IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v9y2003i2p209-231.html
   My bibliography  Save this article

Dynamics of Narrow Tilting Vehicles

Author

Listed:
  • R. Rajamani
  • J. Gohl
  • L. Alexander
  • P. Starr

Abstract

Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to play a crucial role. This paper concentrates on developing a dynamic model for narrow vehicles that can be used for the design and evaluation of active tilt control systems. The model has four degrees of freedom including lateral and tilt dynamics. The influence of gyroscopic forces due to rotating wheels and the influence of front wheel trail are included but secondary coupling effects are ignored so as to keep the model tractable. The model is used in this paper to understand the influence of vehicle tilt on the steering angle required for cornering, the desired tilt angle for any specified cornering maneuver and the influence of gyroscopic moments on transient tilting/cornering maneuvers. A study of the model equations also provides insight into how narrow vehicles can be designed so as to be self-stabilizing.

Suggested Citation

  • R. Rajamani & J. Gohl & L. Alexander & P. Starr, 2003. "Dynamics of Narrow Tilting Vehicles," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 9(2), pages 209-231, June.
  • Handle: RePEc:taf:nmcmxx:v:9:y:2003:i:2:p:209-231
    DOI: 10.1076/mcmd.9.2.209.16521
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1076/mcmd.9.2.209.16521
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1076/mcmd.9.2.209.16521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Karamuk & Orhan Behic Alankus, 2022. "Development and Experimental Implementation of Active Tilt Control System Using a Servo Motor Actuator for Narrow Tilting Electric Vehicle," Energies, MDPI, vol. 15(6), pages 1-28, March.
    2. Mustafa Karamuk & Orhan Behic Alankus, 2023. "Direct Tilt Controller Design with Disturbance Compensation and Implementation for a Narrow Tilting Electric Vehicle," Energies, MDPI, vol. 16(15), pages 1-28, July.
    3. Jialing Yao & Meng Wang & Zhihong Li & Yunyi Jia, 2021. "Research on Model Predictive Control for Automobile Active Tilt Based on Active Suspension," Energies, MDPI, vol. 14(3), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:9:y:2003:i:2:p:209-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.