IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp991-999.html
   My bibliography  Save this article

Combination of meteorological reanalysis data and stochastic simulation for modelling wind generation variability

Author

Listed:
  • Koivisto, Matti
  • Jónsdóttir, Guðrún Margrét
  • Sørensen, Poul
  • Plakas, Konstantinos
  • Cutululis, Nicolaos

Abstract

As installed wind generation capacities increase, there is a need to model variability in wind generation in detail to analyse its impacts on power systems. Utilization of meteorological reanalysis data and stochastic simulation are possible approaches for modelling this variability. In this paper, a combination of these two approaches is used to model wind generation variability. Parameters for the model are determined based on measured wind speed data. The model is used to simulate wind generation from the level of a single offshore wind power plant to the aggregate onshore wind generation of western Denmark. The simulations are compared to two years of generation measurements on 15 min resolution. The results indicate that the model, combining reanalysis data and stochastic simulation, can successfully model wind generation variability on different geographical aggregation levels on sub-hourly resolution. It is shown that the addition of stochastic simulation to reanalysis data is required when modelling offshore wind generation and when analysing onshore wind in small geographical regions.

Suggested Citation

  • Koivisto, Matti & Jónsdóttir, Guðrún Margrét & Sørensen, Poul & Plakas, Konstantinos & Cutululis, Nicolaos, 2020. "Combination of meteorological reanalysis data and stochastic simulation for modelling wind generation variability," Renewable Energy, Elsevier, vol. 159(C), pages 991-999.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:991-999
    DOI: 10.1016/j.renene.2020.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    2. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    3. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    4. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Ariyarathne, Sakitha & Gangammanavar, Harsha & Sundararajan, Raanju R., 2022. "Change point detection-based simulation of nonstationary sub-hourly wind time series," Applied Energy, Elsevier, vol. 310(C).
    3. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    4. Rujie Zhu & Kaushik Das & Poul Ejnar Sørensen & Anca Daniela Hansen, 2023. "Optimal Participation of Co-Located Wind–Battery Plants in Sequential Electricity Markets," Energies, MDPI, vol. 16(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    4. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    5. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    6. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    7. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    8. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    9. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    11. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    12. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    13. Abuzayed, Anas & Hartmann, Niklas, 2022. "MyPyPSA-Ger: Introducing CO2 taxes on a multi-regional myopic roadmap of the German electricity system towards achieving the 1.5 °C target by 2050," Applied Energy, Elsevier, vol. 310(C).
    14. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
    15. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    16. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    17. Bernhard-Johannes Jesse & Simon Morgenthaler & Bastian Gillessen & Simon Burges & Wilhelm Kuckshinrichs, 2020. "Potential for Optimization in European Power Plant Fleet Operation," Energies, MDPI, vol. 13(3), pages 1-22, February.
    18. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    20. Juan Gea-Bermúdez & Kaushik Das & Hardi Koduvere & Matti Juhani Koivisto, 2020. "Day-Ahead Market Modelling of Large-Scale Highly-Renewable Multi-Energy Systems: Analysis of the North Sea Region towards 2050," Energies, MDPI, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:991-999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.