IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5261-d1190098.html
   My bibliography  Save this article

Method for Evaluating the Reliability and Competitive Failure of Wind Turbine Gearbox Bearings Considering the Fault Incubation Point

Author

Listed:
  • Weixin Yang

    (North China Electric Power Research Institute Co., Ltd., Beijing 100045, China)

  • Yu Wang

    (North China Electric Power Research Institute Co., Ltd., Beijing 100045, China)

  • Kai Liang

    (North China Electric Power Research Institute Co., Ltd., Beijing 100045, China)

  • Yangfan Zhang

    (North China Electric Power Research Institute Co., Ltd., Beijing 100045, China)

  • Shiyu Lin

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • Hongshan Zhao

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

Aiming to resolve the problem where the reliability of gearbox bearings of wind turbines is easily affected by random impact, this paper puts forward a reliability evaluation method for the competitive failure of gearbox bearings of wind turbines considering the fault incubation point. Firstly, we use Weibull distribution to simulate the fault latent process of wind turbine gearbox bearings. Secondly, a natural degradation model of gearbox bearing is established based on the Wiener process. Then, we model the random impact arrival frequency and impact intensity through a homogeneous Poisson process and normal distribution, respectively. Finally, based on considering the fault incubation point, the natural degradation of the bearing, the instantaneous degradation caused by impact, and the decline in the impact resistance of the bearing, a reliability evaluation model of gearbox bearings of wind turbines is established. A high-speed bearing of a gearbox from a wind farm in northern China is selected for simulation analysis. The results show that the proposed method can better describe the reliability decline process of the gearbox bearings of wind turbines, which has a specific guiding significance for the maintenance of wind turbines.

Suggested Citation

  • Weixin Yang & Yu Wang & Kai Liang & Yangfan Zhang & Shiyu Lin & Hongshan Zhao, 2023. "Method for Evaluating the Reliability and Competitive Failure of Wind Turbine Gearbox Bearings Considering the Fault Incubation Point," Energies, MDPI, vol. 16(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5261-:d:1190098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhardwaj, U. & Teixeira, A.P. & Soares, C. Guedes, 2019. "Reliability prediction of an offshore wind turbine gearbox," Renewable Energy, Elsevier, vol. 141(C), pages 693-706.
    2. Wenbin Dong & Yihan Xing & Torgeir Moan, 2012. "Time Domain Modeling and Analysis of Dynamic Gear Contact Force in a Wind Turbine Gearbox with Respect to Fatigue Assessment," Energies, MDPI, vol. 5(11), pages 1-22, November.
    3. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    4. Bo Guo, 2023. "Degradation Modeling and Residual Life Prediction Based on Nonlinear Wiener Process," Springer Series in Reliability Engineering, in: Yu Liu & Dong Wang & Jinhua Mi & He Li (ed.), Advances in Reliability and Maintainability Methods and Engineering Applications, pages 445-474, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    3. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    4. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    5. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    6. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Yaru Yang & Hua Li & Jin Yao & Wenxiang Gao & Haiyan Peng, 2019. "Analysis on the Force and Life of Gearbox in Double-Rotor Wind Turbine," Energies, MDPI, vol. 12(21), pages 1-19, November.
    9. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    10. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    12. Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
    13. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    14. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    15. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    18. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    20. Artur Bejger & Ewelina Frank & Przemysław Bartoszko, 2021. "Failure Analysis of Wind Turbine Planetary Gear," Energies, MDPI, vol. 14(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5261-:d:1190098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.