Techno-Economic Analysis of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems for Stationary Power Applications Using Renewable Hydrogen
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
- Longden, Thomas & Beck, Fiona J. & Jotzo, Frank & Andrews, Richard & Prasad, Mousami, 2022. "‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen," Applied Energy, Elsevier, vol. 306(PB).
- Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
- Denver F. Cheddie, 2010. "Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant," Energies, MDPI, vol. 3(4), pages 1-16, April.
- Kang, Sanggyu & Ahn, Kook-Young, 2017. "Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation," Applied Energy, Elsevier, vol. 195(C), pages 1086-1099.
- Gandiglio, M. & Lanzini, A. & Leone, P. & Santarelli, M. & Borchiellini, R., 2013. "Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance," Energy, Elsevier, vol. 55(C), pages 142-155.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andreas von Döllen & Stephan Schlüter, 2024. "Heat Pumps for Germany—Additional Pressure on the Supply–Demand Equilibrium and How to Cope with Hydrogen," Energies, MDPI, vol. 17(12), pages 1-20, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
- Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
- Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
- Choi, Wonjae & Song, Han Ho, 2020. "Composition-considered Woschni heat transfer correlation: Findings from the analysis of over-expected engine heat losses in a solid oxide fuel cell–internal combustion engine hybrid system," Energy, Elsevier, vol. 203(C).
- Jin, Xinfang & Ku, Anthony & Ohara, Brandon & Huang, Kevin & Singh, Surinder, 2021. "Performance analysis of a 550MWe solid oxide fuel cell and air turbine hybrid system powered by coal-derived syngas," Energy, Elsevier, vol. 222(C).
- Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
- Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
- Mingfei Li & Jiajian Wu & Zhengpeng Chen & Jiangbo Dong & Zhiping Peng & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2022. "Data-Driven Voltage Prognostic for Solid Oxide Fuel Cell System Based on Deep Learning," Energies, MDPI, vol. 15(17), pages 1-20, August.
- Yue Teng & Ho Yeon Lee & Haesu Lee & Yoon Ho Lee, 2022. "Effect of Sputtering Pressure on the Nanostructure and Residual Stress of Thin-Film YSZ Electrolyte," Sustainability, MDPI, vol. 14(15), pages 1-9, August.
- Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
- Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
- Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
- Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
- Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
- Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
- Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
- Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
- Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
- Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
- Park, Heejin & Jung, Yoonju & Park, Chungi & Lee, Jaeseung & Ghasemi, Masoomeh & Alam, Afroz & Kim, Hyeonjin & Kim, Jinwook & Park, Sojin & Choi, Kyungshik & You, Hyunseok & Ju, Hyunchul, 2023. "Performance evaluation and economic feasibility of a PAFC-based multi-energy hub system in South Korea," Energy, Elsevier, vol. 278(PB).
More about this item
Keywords
solid oxide fuel cell; SOFC–GT hybrid; anode and cathode recirculation; techno-economics; green hydrogen;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4955-:d:1179927. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.