IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4875-d1176948.html
   My bibliography  Save this article

Implicit Mathematical Model of Photovoltaic Arrays with Improved Calculation Speed Based on Inflection Points of the Current–Voltage Curves

Author

Listed:
  • Juan David Bastidas-Rodriguez

    (Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Manizales 170003, Colombia
    These authors contributed equally to this work.)

  • Carlos Andres Ramos-Paja

    (Facultad de Minas, Universidad Nacional de Colombia, Medellin 050041, Colombia
    These authors contributed equally to this work.)

  • Andres Julian Saavedra-Montes

    (Facultad de Minas, Universidad Nacional de Colombia, Medellin 050041, Colombia
    These authors contributed equally to this work.)

Abstract

Dynamic reconfiguration, the monitoring of power production, and the fault diagnosis of photovoltaic arrays, among other applications, require fast and accurate models of photovoltaic arrays. In the literature, some models use the Lambert-W function to represent each module of the array, which increases the calculation time. Other models that use implicit equations to avoid the Lambert-W function do not use the inflection voltages to simplify the system of nonlinear equations that represent the array, increasing the computational burden. Therefore, this paper proposes mathematical models for series-parallel (SP) and total-cross-tied (TCT) photovoltaic arrays based on the implicit equations of the single-diode model and the inflection points of the current–voltage curves. These models decrease the calculation time by reducing the complexity of the nonlinear equation systems that represent each string of SP arrays and the whole TCT. Consequently, the calculation process that solves the model speeds up in comparison with processes that solve traditional explicit models based on the Lambert-W function. The results of several simulation scenarios using the proposed SP model with different array sizes show a reduction in the computation time by 82.97 % in contrast with the traditional solution. Additionally, when the proposed TCT model for arrays larger than 2 × 2 is used, the reduction in the computation time is between 47.71 % and 92.28 % . In dynamic reconfiguration, the results demonstrate that the proposed SP model provides the same optimal configuration but 7 times faster than traditional solutions, and the TCT model is solved at least 4 times faster than classical solutions.

Suggested Citation

  • Juan David Bastidas-Rodriguez & Carlos Andres Ramos-Paja & Andres Julian Saavedra-Montes, 2023. "Implicit Mathematical Model of Photovoltaic Arrays with Improved Calculation Speed Based on Inflection Points of the Current–Voltage Curves," Energies, MDPI, vol. 16(13), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4875-:d:1176948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Miguel Pérez Archila & Juan David Bastidas-Rodríguez & Rodrigo Correa & Luz Adriana Trejos Grisales & Daniel Gonzalez-Montoya, 2020. "A Solution of Implicit Model of Series-Parallel Photovoltaic Arrays by Using Deterministic and Metaheuristic Global Optimization Algorithms," Energies, MDPI, vol. 13(4), pages 1-22, February.
    2. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    3. Orozco-Gutierrez, M.L. & Spagnuolo, G. & Ramos-Paja, C.A. & Ramirez-Scarpetta, J.M & Ospina-Agudelo, B., 2019. "Enhanced simulation of total cross tied photovoltaic arrays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 49-64.
    4. Orozco-Gutierrez, M.L. & Ramirez-Scarpetta, J.M. & Spagnuolo, G. & Ramos-Paja, C.A., 2013. "A technique for mismatched PV array simulation," Renewable Energy, Elsevier, vol. 55(C), pages 417-427.
    5. Luz Adriana Trejos-Grisales & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja, 2020. "Mathematical Model for Regular and Irregular PV Arrays with Improved Calculation Speed," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeisson Vélez-Sánchez & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja & Daniel González Montoya & Luz Adriana Trejos-Grisales, 2019. "A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules," Energies, MDPI, vol. 12(2), pages 1-20, January.
    2. Luis Miguel Pérez Archila & Juan David Bastidas-Rodríguez & Rodrigo Correa & Luz Adriana Trejos Grisales & Daniel Gonzalez-Montoya, 2020. "A Solution of Implicit Model of Series-Parallel Photovoltaic Arrays by Using Deterministic and Metaheuristic Global Optimization Algorithms," Energies, MDPI, vol. 13(4), pages 1-22, February.
    3. Abdulhamid Atia & Fatih Anayi & Min Gao, 2022. "Influence of Shading on Solar Cell Parameters and Modelling Accuracy Improvement of PV Modules with Reverse Biased Solar Cells," Energies, MDPI, vol. 15(23), pages 1-19, November.
    4. Jangyoul You & Myungkwan Lim & Kipyo You & Changhee Lee, 2021. "Wind Coefficient Distribution of Arranged Ground Photovoltaic Panels," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    5. Bouselham, Loubna & Rabhi, Abdelhamid & Hajji, Bekkay & Mellit, Adel, 2021. "Photovoltaic array reconfiguration method based on fuzzy logic and recursive least squares: An experimental validation," Energy, Elsevier, vol. 232(C).
    6. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    7. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    8. Kim, Chungil & Jeong, Myeong Sang & Ko, Jaehwan & Ko, MyeongGeun & Kang, Min Gu & Song, Hyung-Jun, 2021. "Inhomogeneous rear reflector induced hot-spot risk and power loss in building-integrated bifacial c-Si photovoltaic modules," Renewable Energy, Elsevier, vol. 163(C), pages 825-835.
    9. Ryan M. Smith & Manjunath Matam & Hubert Seigneur, 2023. "Simulated Impact of Shortened Strings in Commercial and Utility-Scale Photovoltaic Arrays," Energies, MDPI, vol. 16(21), pages 1-15, October.
    10. Mariana Durango-Flórez & Daniel González-Montoya & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja, 2022. "PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    11. Woo Gyun Shin & Suk Whan Ko & Hyung Jun Song & Young Chul Ju & Hye Mi Hwang & Gi Hwan Kang, 2018. "Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature," Energies, MDPI, vol. 11(9), pages 1-11, September.
    12. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    13. Bouabdallah, A. & Olivier, J.C. & Bourguet, S. & Machmoum, M. & Schaeffer, E., 2015. "Safe sizing methodology applied to a standalone photovoltaic system," Renewable Energy, Elsevier, vol. 80(C), pages 266-274.
    14. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    15. Rosario Carbone & Cosimo Borrello, 2022. "Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading," Energies, MDPI, vol. 15(11), pages 1-18, June.
    16. Bressan, M. & Gutierrez, A. & Garcia Gutierrez, L. & Alonso, C., 2018. "Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems," Renewable Energy, Elsevier, vol. 127(C), pages 334-343.
    17. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    18. Guarino, Antonio & Monmasson, Éric & Spagnuolo, Giovanni, 2021. "SoC-based embedded real-time simulation of mismatched photovoltaic strings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 267-281.
    19. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    20. Orozco-Gutierrez, M.L. & Spagnuolo, G. & Ramos-Paja, C.A. & Ramirez-Scarpetta, J.M & Ospina-Agudelo, B., 2019. "Enhanced simulation of total cross tied photovoltaic arrays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 49-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4875-:d:1176948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.