IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4805-d1174661.html
   My bibliography  Save this article

Non-Intrusive Load Identification Method Based on KPCA-IGWO-RF

Author

Listed:
  • Sheng Hu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Gongjin Yuan

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Kaifeng Hu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Cong Liu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Minghu Wu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

Abstract

Non-invasive load monitoring (NILM) represents a crucial technology in enabling smart electricity consumption. In response to the challenges posed by high feature redundancy, low identification accuracy, and the high computational costs associated with current load identification models, a novel load identification model based on kernel principal component analysis (KPCA) and random forest (RF) optimized by improved Grey Wolf Optimizer (IGWO) is proposed. Initially, 17 steady-state load characteristics were selected as discrimination indexes. KPCA was subsequently employed to reduce the dimension of the original data and diminish the correlation between the feature indicators. Then, the dimension reduction in load data was classified by RF. In order to improve the performance of the classifier, IGWO was used to optimize the parameters of the RF classifier. Finally, the proposed model was implemented to identify 25 load states consisting of seven devices. The experimental results demonstrate that the identification accuracy of this method is up to 96.8% and the Kappa coefficient is 0.9667.

Suggested Citation

  • Sheng Hu & Gongjin Yuan & Kaifeng Hu & Cong Liu & Minghu Wu, 2023. "Non-Intrusive Load Identification Method Based on KPCA-IGWO-RF," Energies, MDPI, vol. 16(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4805-:d:1174661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tekler, Zeynep Duygu & Low, Raymond & Zhou, Yuren & Yuen, Chau & Blessing, Lucienne & Spanos, Costas, 2020. "Near-real-time plug load identification using low-frequency power data in office spaces: Experiments and applications," Applied Energy, Elsevier, vol. 275(C).
    2. Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Reviewing and Integrating AEC Practices into Industry 6.0: Strategies for Smart and Sustainable Future-Built Environments," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    2. Botman, Lola & Lago, Jesus & Fu, Xiaohan & Chia, Keaton & Wolf, Jesse & Kleissl, Jan & De Moor, Bart, 2024. "Building plug load mode detection, forecasting and scheduling," Applied Energy, Elsevier, vol. 364(C).
    3. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    4. Hashim Raza Khan & Wajahat Ahmed & Wasiq Masud & Urooj Alam & Kamran Arshad & Khaled Assaleh & Saad Ahmed Qazi, 2024. "Design and Experimental Results of an AIoT-Enabled, Energy-Efficient Ceiling Fan System," Sustainability, MDPI, vol. 16(12), pages 1-18, June.
    5. Loprete, Jason & Trojanowski, Rebecca & Butcher, Thomas & Longtin, Jon & Assanis, Dimitris, 2024. "Enabling residential heating decarbonization through hydronic low-temperature thermal distribution using forced-air assistive devices," Applied Energy, Elsevier, vol. 353(PA).
    6. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    7. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    8. Paraskevas Koukaras & Akeem Mustapha & Aristeidis Mystakidis & Christos Tjortjis, 2024. "Optimizing Building Short-Term Load Forecasting: A Comparative Analysis of Machine Learning Models," Energies, MDPI, vol. 17(6), pages 1-26, March.
    9. Massimo Lauria & Maria Azzalin, 2024. "Digital Transformation in the Construction Sector: A Digital Twin for Seismic Safety in the Lifecycle of Buildings," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    10. Luo, Jielin & Shen, Yongting & Yang, Hongxing, 2024. "Investigations on an integrated air-conditioning system using technologies of desiccant dehumidification, indirect evaporative cooling and CO2 capture," Applied Energy, Elsevier, vol. 369(C).
    11. Zhang, Yuanshi & Qian, Wenyan & Ye, Yujian & Li, Yang & Tang, Yi & Long, Yu & Duan, Meimei, 2023. "A novel non-intrusive load monitoring method based on ResNet-seq2seq networks for energy disaggregation of distributed energy resources integrated with residential houses," Applied Energy, Elsevier, vol. 349(C).
    12. Homod, Raad Z. & Mohammed, Hayder Ibrahim & Abderrahmane, Aissa & Alawi, Omer A. & Khalaf, Osamah Ibrahim & Mahdi, Jasim M. & Guedri, Kamel & Dhaidan, Nabeel S. & Albahri, A.S. & Sadeq, Abdellatif M. , 2023. "Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent," Applied Energy, Elsevier, vol. 351(C).
    13. Nik, Vahid M. & Hosseini, Mohammad, 2023. "CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation," Applied Energy, Elsevier, vol. 350(C).
    14. Bian, Jianxiao & Wang, Jiarui & Yece, Qian, 2024. "A novel study on power consumption of an HVAC system using CatBoost and AdaBoost algorithms combined with the metaheuristic algorithms," Energy, Elsevier, vol. 302(C).
    15. Troy Malatesta & Qilin Li & Jessica K. Breadsell & Christine Eon, 2023. "Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis," Energies, MDPI, vol. 16(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4805-:d:1174661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.