IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4790-d1174038.html
   My bibliography  Save this article

An Exploratory Study on Swedish Stakeholders’ Experiences with Positive Energy Districts

Author

Listed:
  • Moa Mattsson

    (Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden)

  • Thomas Olofsson

    (Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden)

  • Liv Lundberg

    (RISE Research Institute, 412 58 Gothenburg, Sweden)

  • Olga Korda

    (Department of Sustainable Development, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

  • Gireesh Nair

    (Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden)

Abstract

Positive energy district (PED) is a novel idea aimed to have an annual surplus of renewable energy and net zero greenhouse gas emissions within an area. However, it is still an ambiguous concept, which might be due to the complexity of city district projects with interconnected infrastructures and numerous stakeholders involved. This study discusses various aspects of PED implementation and presents practitioners’ experiences with the PED concept, challenges, and facilitators they have faced with real projects. The study is based on interviews with ten Swedish professionals. The major challenges reported for PED implementation were local energy production and energy flexibility, sub-optimization, legislation, suitable system boundaries, and involvement of stakeholders. Most of the interviewees mentioned improved collaboration, integrated innovative technology, political support, and climate change mitigation goals as important facilitators. The interviewees highlighted the importance of a local perspective and considered each city’s preconditions when developing a PED project. The study emphasizes that to facilitate PED implementation and replication in cities, more knowledge and clarity is required about PED such as on the definition and system boundaries.

Suggested Citation

  • Moa Mattsson & Thomas Olofsson & Liv Lundberg & Olga Korda & Gireesh Nair, 2023. "An Exploratory Study on Swedish Stakeholders’ Experiences with Positive Energy Districts," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4790-:d:1174038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Vandevyvere & Dirk Ahlers & Annemie Wyckmans, 2022. "The Sense and Non-Sense of PEDs—Feeding Back Practical Experiences of Positive Energy District Demonstrators into the European PED Framework Definition Development Process," Energies, MDPI, vol. 15(12), pages 1-16, June.
    2. Savis Gohari Krangsås & Koen Steemers & Thaleia Konstantinou & Silvia Soutullo & Mingming Liu & Emanuela Giancola & Bahri Prebreza & Touraj Ashrafian & Lina Murauskaitė & Nienke Maas, 2021. "Positive Energy Districts: Identifying Challenges and Interdependencies," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    3. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Hearn, Adam X., 2022. "Positive energy district stakeholder perceptions and measures for energy vulnerability mitigation," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Dell’Unto & Louise-Nour Sassenou & Lorenzo Olivieri & Francesca Olivieri, 2023. "Technical Feasibility for the Boosting of Positive Energy Districts (PEDs) in Existing Mediterranean Districts: A Methodology and Case Study in Alcorcón, Spain," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    2. Paolo Civiero & Giulia Turci & Beril Alpagut & Michal Kuzmic & Silvia Soutullo & María Nuria Sánchez & Oscar Seco & Silvia Bossi & Matthias Haase & Gilda Massa & Christoph Gollner, 2024. "Operational Insights and Future Potential of the Database for Positive Energy Districts," Energies, MDPI, vol. 17(4), pages 1-58, February.
    3. Dong, Kangyin & Liu, Yang & Wang, Jianda & Dong, Xiucheng, 2024. "Is the digital economy an effective tool for decreasing energy vulnerability? A global case," Ecological Economics, Elsevier, vol. 216(C).
    4. Raphael Souza de Oliveira & Meire Jane Lima de Oliveira & Erick Giovani Sperandio Nascimento & Renelson Sampaio & Aloísio Santos Nascimento Filho & Hugo Saba, 2023. "Renewable Energy Generation Technologies for Decarbonizing Urban Vertical Buildings: A Path towards Net Zero," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    5. Lai, Wenhao & Song, Qi & Zheng, Xiaoliang & Tao, Qiong & Chen, Hualiang, 2023. "A new version of membrane search algorithm for hybrid renewable energy systems dynamic scheduling," Renewable Energy, Elsevier, vol. 209(C), pages 262-276.
    6. Andrea Kerstens & Angela Greco, 2023. "From Buildings to Communities: Exploring the Role of Financial Schemes for Sustainable Plus Energy Neighborhoods," Energies, MDPI, vol. 16(14), pages 1-18, July.
    7. Ma, Binfeng & Wang, Xiaofang, 2023. "How does green floating bond and financial sector readiness promote green economic growth evidence from China," Resources Policy, Elsevier, vol. 85(PB).
    8. Jane Loveday & Gregory M. Morrison & David A. Martin, 2022. "Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions," Sustainability, MDPI, vol. 14(5), pages 1-37, March.
    9. Zarrin Fatima & Tomas Vacha & Kavyashree Swamygowda & Reef Qubailat, 2022. "Getting Started with Positive Energy Districts: Experience until Now from Maia, Reykjavik, Kifissia, Kladno and Lviv," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    10. von Gunten Diane & Fabien Poumadère & Marc Bungener & Damien Chiffelle, 2021. "Implementation of Local Energy Plans in Western Switzerland: Survey of the Current State and Possible Paths Forward," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    11. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    13. Sesil Koutra, 2022. "From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    14. Bui, Tat-Dat & Tseng, Jiun-Wei & Tsai, Feng Ming & Ali, Mohd Helmi & Lim, Ming K. & Tseng, Ming-Lang, 2023. "Energy security challenges and opportunities in the carbon neutrality context: A hierarchical model through systematic data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Federica Leone & Francesco Reda & Ala Hasan & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2022. "Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe," Energies, MDPI, vol. 16(1), pages 1-28, December.
    16. Sulzer, Matthias & Wetter, Michael & Mutschler, Robin & Sangiovanni-Vincentelli, Alberto, 2023. "Platform-based design for energy systems," Applied Energy, Elsevier, vol. 352(C).
    17. Zhang, Hongsheng & Hao, Ruijun & Liu, Xingang & Zhang, Ning & Guo, Wenli & Zhang, Zhenghui & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance analysis of an improved coal-fired power generation system coupled with geothermal energy based on organic Rankine cycle," Renewable Energy, Elsevier, vol. 201(P1), pages 273-290.
    18. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2024. "Fifth-generation district heating and cooling: Opportunities and implementation challenges in a mild climate," Energy, Elsevier, vol. 286(C).
    19. Hasan A. M. Hamdan & Luitzen Boer & Poul Houman Andersen, 2023. "The architecture of procurement in sustainable and zero-emission neighborhood projects—strategic challenges and new realities," Environment Systems and Decisions, Springer, vol. 43(3), pages 472-488, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4790-:d:1174038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.