IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14134-d1246689.html
   My bibliography  Save this article

Technical Feasibility for the Boosting of Positive Energy Districts (PEDs) in Existing Mediterranean Districts: A Methodology and Case Study in Alcorcón, Spain

Author

Listed:
  • Martina Dell’Unto

    (Department of Construction and Technology in Architecture, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Av. de Juan de Herrera 4, 28040 Madrid, Spain)

  • Louise-Nour Sassenou

    (Department of Construction and Technology in Architecture, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Av. de Juan de Herrera 4, 28040 Madrid, Spain
    Instituto de Energía Solar, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain)

  • Lorenzo Olivieri

    (Department of Construction and Technology in Architecture, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Av. de Juan de Herrera 4, 28040 Madrid, Spain
    Instituto de Energía Solar, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain)

  • Francesca Olivieri

    (Department of Construction and Technology in Architecture, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Av. de Juan de Herrera 4, 28040 Madrid, Spain)

Abstract

The deployment of Positive Energy Districts (PEDs) is currently facing a set of diverse and complex challenges, mainly arising from their novelty and the lack of practical experience. In that sense, there is a clear need for translating concepts and strategies into instruments that support the design, planning and operation of PEDs. The present research aims to address this gap by introducing a methodology to assess the potential of an existing district to be converted into a PED in the specific context of Mediterranean cities, which, in addition to presenting similar climatic characteristics, share a common urban pattern and culture. The first step consists of analyzing the initial state of the district through the study of its bioclimatic and urban characteristics and estimation of its energy demand. Then, the second step allows for selecting and designing a set of passive and active strategies for the district. Finally, the technical feasibility of the scenario is evaluated by calculating its annual energy balance. The methodology is applied to a district of Alcorcón, Spain. Results show that the selected district could achieve an annual surplus of 4 GWh and, therefore, has the technical potential to be converted into a PED.

Suggested Citation

  • Martina Dell’Unto & Louise-Nour Sassenou & Lorenzo Olivieri & Francesca Olivieri, 2023. "Technical Feasibility for the Boosting of Positive Energy Districts (PEDs) in Existing Mediterranean Districts: A Methodology and Case Study in Alcorcón, Spain," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14134-:d:1246689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Jaume Salom, 2022. "Innovative PEDRERA Model Tool Boosting Sustainable and Feasible Renovation Programs at District Scale in Spain," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    2. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    3. Savis Gohari Krangsås & Koen Steemers & Thaleia Konstantinou & Silvia Soutullo & Mingming Liu & Emanuela Giancola & Bahri Prebreza & Touraj Ashrafian & Lina Murauskaitė & Nienke Maas, 2021. "Positive Energy Districts: Identifying Challenges and Interdependencies," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    4. Han Vandevyvere & Dirk Ahlers & Annemie Wyckmans, 2022. "The Sense and Non-Sense of PEDs—Feeding Back Practical Experiences of Positive Energy District Demonstrators into the European PED Framework Definition Development Process," Energies, MDPI, vol. 15(12), pages 1-16, June.
    5. Derkenbaeva, Erkinai & Halleck Vega, Solmaria & Hofstede, Gert Jan & van Leeuwen, Eveline, 2022. "Positive energy districts: Mainstreaming energy transition in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Mansoureh Gholami & Alberto Barbaresi & Patrizia Tassinari & Marco Bovo & Daniele Torreggiani, 2020. "A Comparison of Energy and Thermal Performance of Rooftop Greenhouses and Green Roofs in Mediterranean Climate: A Hygrothermal Assessment in WUFI," Energies, MDPI, vol. 13(8), pages 1-15, April.
    7. Andrea Gabaldón Moreno & Fredy Vélez & Beril Alpagut & Patxi Hernández & Cecilia Sanz Montalvillo, 2021. "How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    8. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    9. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    3. Federica Leone & Francesco Reda & Ala Hasan & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2022. "Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe," Energies, MDPI, vol. 16(1), pages 1-28, December.
    4. Moa Mattsson & Thomas Olofsson & Liv Lundberg & Olga Korda & Gireesh Nair, 2023. "An Exploratory Study on Swedish Stakeholders’ Experiences with Positive Energy Districts," Energies, MDPI, vol. 16(12), pages 1-22, June.
    5. Aparisi-Cerdá, I. & Ribó-Pérez, D. & Gómez-Navarro, T. & García-Melón, M. & Peris-Blanes, J., 2024. "Prioritising Positive Energy Districts to achieve carbon neutral cities: Delphi-DANP approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    8. Moreno, Álex & Chemisana, Daniel & Lamnatou, Chrysovalantou & Maestro, Santiago, 2023. "Energy and photosynthetic performance investigation of a semitransparent photovoltaic rooftop greenhouse for building integration," Renewable Energy, Elsevier, vol. 215(C).
    9. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    10. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    11. Fatma Balany & Nitin Muttil & Shobha Muthukumaran & Man Sing Wong & Anne W. M. Ng, 2022. "Studying the Effect of Blue-Green Infrastructure on Microclimate and Human Thermal Comfort in Melbourne’s Central Business District," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
    12. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    13. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    14. Mamdooh Alwetaishi & Omrane Benjeddou, 2021. "Impact of Window to Wall Ratio on Energy Loads in Hot Regions: A Study of Building Energy Performance," Energies, MDPI, vol. 14(4), pages 1-15, February.
    15. Axel Bruck & Santiago Díaz Ruano & Hans Auer, 2021. "A Critical Perspective on Positive Energy Districts in Climatically Favoured Regions: An Open-Source Modelling Approach Disclosing Implications and Possibilities," Energies, MDPI, vol. 14(16), pages 1-25, August.
    16. ChungYeon Won & SangTae No & Qamar Alhadidi, 2019. "Factors Affecting Energy Performance of Large-Scale Office Buildings: Analysis of Benchmarking Data from New York City and Chicago," Energies, MDPI, vol. 12(24), pages 1-17, December.
    17. Prades-Gil, C. & Viana-Fons, J.D. & Masip, X. & Cazorla-Marín, A. & Gómez-Navarro, T., 2023. "An agile heating and cooling energy demand model for residential buildings. Case study in a mediterranean city residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    19. Ilaria Marotta & Francesco Guarino & Sonia Longo & Maurizio Cellura, 2021. "Environmental Sustainability Approaches and Positive Energy Districts: A Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-45, November.
    20. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2022. "Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities," Renewable Energy, Elsevier, vol. 198(C), pages 1383-1397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14134-:d:1246689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.