IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4712-d1171089.html
   My bibliography  Save this article

Improved Current and MTPA Control Characteristics Using FEM-Based Inductance Maps for Vector-Controlled IPM Motor

Author

Listed:
  • Faiz Husnayain

    (Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
    Department of Electrical Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Toshihiko Noguchi

    (Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan)

  • Ryosuke Akaki

    (Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan)

  • Feri Yusivar

    (Department of Electrical Engineering, Universitas Indonesia, Depok 16424, Indonesia)

Abstract

Some major problems in the motor drive are the overshoot or undershoot of transient response characteristics and a parameter mismatch due to magnetic saturation. This study proposed a 3D inductance map combined with a maximum-torque-per-ampere (MTPA) map based on a finite-element (FE) motor model considering a cross-coupling magnetic saturation impact to overcome this problem. The proposed FE motor model has a high accuracy of no-load back electromotive force (e.m.f.) around 98.3% compared to the measurement results. Then, nine scenarios of vector control combinations of inductance maps and current supply variations of β 0°, 45°, and MTPA were investigated. As a result, the transient response improvement for β 0°, 45°, and MTPA without the map and with L d and L q maps is 63%, 10%, and 15%, respectively. Moreover, for the steady-state response, the average torque improvement between MTPA and I dref 0 A control is 9.21%, 8.97%, and 8.98% for the no-map, ave-map, and 3D-inductance-map conditions, respectively. The MTPA trajectory characteristic was also updated to illustrate the actual MTPA condition compared to the conventional MTPA control. In detail, the proposed method has reduced the parameter mismatch for the current control loop in the transient state and improved the MTPA control trajectory for the steady-state response. Finally, the improvement of vector control characteristics of the proposed method was verified by an FE simulation and experimental measurement results.

Suggested Citation

  • Faiz Husnayain & Toshihiko Noguchi & Ryosuke Akaki & Feri Yusivar, 2023. "Improved Current and MTPA Control Characteristics Using FEM-Based Inductance Maps for Vector-Controlled IPM Motor," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4712-:d:1171089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    2. Hai Guo & Qun Ding & Yifan Song & Haoran Tang & Likun Wang & Jingying Zhao, 2020. "Predicting Temperature of Permanent Magnet Synchronous Motor Based on Deep Neural Network," Energies, MDPI, vol. 13(18), pages 1-14, September.
    3. Vladimir Prakht & Mohamed N. Ibrahim & Vadim Kazakbaev, 2023. "Energy Efficiency Improvement of Electric Machines without Rare-Earth Magnets," Energies, MDPI, vol. 16(8), pages 1-3, April.
    4. Ning-Zhi Jin & Hong-Chao Chen & Dong-Yang Sun & Zhi-Qiang Wu & Kai Zhou & Long Zhang, 2022. "Virtual Signal Injection Maximum Torque per Ampere Control Based on Inductor Identification," Energies, MDPI, vol. 15(13), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    2. Junci Cao & Hua Yan & Dong Li & Yu Wang & Weili Li, 2021. "Influence of the Variable Cross-Section Stator Ventilation Structure on the Temperature of an Induction Motor," Energies, MDPI, vol. 14(17), pages 1-17, August.
    3. Mohamed Nabil Fathy Ibrahim & Peter Sergeant & Essam Rashad, 2016. "Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors," Energies, MDPI, vol. 9(11), pages 1-14, November.
    4. Insu Kim & Beopsoo Kim & Denis Sidorov, 2022. "Machine Learning for Energy Systems Optimization," Energies, MDPI, vol. 15(11), pages 1-8, June.
    5. Lei Yu & Youtong Zhang & Wenqing Huang, 2017. "Accurate and Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors," Energies, MDPI, vol. 10(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4712-:d:1171089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.