IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4509-d1163465.html
   My bibliography  Save this article

Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile

Author

Listed:
  • Emigdio Chavez-Angel

    (Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain)

  • Alejandro Castro-Alvarez

    (Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile)

  • Nicolas Sapunar

    (Centro de Investigación Científico y Tecnológico de la Región de Antofagasta, Antofagasta 1240000, Chile)

  • Francisco Henríquez

    (Centro de Investigación Científico y Tecnológico de la Región de Antofagasta, Antofagasta 1240000, Chile)

  • Javier Saavedra

    (Centro de Investigación Científico y Tecnológico de la Región de Antofagasta, Antofagasta 1240000, Chile)

  • Sebastián Rodríguez

    (Hoyka Energia, Antofagasta 1240000, Chile)

  • Iván Cornejo

    (Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile)

  • Lindley Maxwell

    (Centro de Investigación Científico y Tecnológico de la Región de Antofagasta, Antofagasta 1240000, Chile)

Abstract

Green hydrogen is gaining increasing attention as a key component of the global energy transition towards a more sustainable industry. Chile, with its vast renewable energy potential, is well positioned to become a major producer and exporter of green hydrogen. In this context, this paper explores the prospects for green hydrogen production and use in Chile. The perspectives presented in this study are primarily based on a compilation of government reports and data from the scientific literature, which primarily offer a theoretical perspective on the efficiency and cost of hydrogen production. To address the need for experimental data, an ongoing experimental project was initiated in March 2023. This project aims to assess the efficiency of hydrogen production and consumption in the Atacama Desert through the deployment of a mobile on-site laboratory for hydrogen generation. The facility is mainly composed by solar panels, electrolyzers, fuel cells, and a battery bank, and it moves through the Atacama Desert in Chile at different altitudes, from the sea level, to measure the efficiency of hydrogen generation through the energy approach. The challenges and opportunities in Chile for developing a robust green hydrogen economy are also analyzed. According to the results, Chile has remarkable renewable energy resources, particularly in solar and wind power, that could be harnessed to produce green hydrogen. Chile has also established a supportive policy framework that promotes the development of renewable energy and the adoption of green hydrogen technologies. However, there are challenges that need to be addressed, such as the high capital costs of green hydrogen production and the need for supportive infrastructure. Despite these challenges, we argue that Chile has the potential to become a leading producer and exporter of green hydrogen or derivatives such as ammonia or methanol. The country’s strategic location, political stability, and strong commitment to renewable energy provide a favorable environment for the development of a green hydrogen industry. The growing demand for clean energy and the increasing interest in decarbonization present significant opportunities for Chile to capitalize on its renewable energy resources and become a major player in the global green hydrogen market.

Suggested Citation

  • Emigdio Chavez-Angel & Alejandro Castro-Alvarez & Nicolas Sapunar & Francisco Henríquez & Javier Saavedra & Sebastián Rodríguez & Iván Cornejo & Lindley Maxwell, 2023. "Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile," Energies, MDPI, vol. 16(11), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4509-:d:1163465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses," Energies, MDPI, vol. 13(2), pages 1-96, January.
    2. Marzo, Aitor & Ferrada, Pablo & Beiza, Felipe & Besson, Pierre & Alonso-Montesinos, Joaquín & Ballestrín, Jesús & Román, Roberto & Portillo, Carlos & Escobar, Rodrigo & Fuentealba, Edward, 2018. "Standard or local solar spectrum? Implications for solar technologies studies in the Atacama desert," Renewable Energy, Elsevier, vol. 127(C), pages 871-882.
    3. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    4. Hossein Ali Yousefi Rizi & Donghoon Shin, 2022. "Green Hydrogen Production Technologies from Ammonia Cracking," Energies, MDPI, vol. 15(21), pages 1-49, November.
    5. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.
    6. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Addendum: Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020, 13, ," Energies, MDPI, vol. 13(5), pages 1-1, March.
    7. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    8. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    9. Ferrada, Francisco & Babonneau, Frederic & Homem-de-Mello, Tito & Jalil-Vega, Francisca, 2023. "The role of hydrogen for deep decarbonization of energy systems: A Chilean case study," Energy Policy, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmona, Roberto & Miranda, Ricardo & Rodriguez, Pablo & Garrido, René & Serafini, Daniel & Rodriguez, Angel & Mena, Marcelo & Fernandez Gil, Alejandro & Valdes, Javier & Masip, Yunesky, 2024. "Assessment of the green hydrogen value chain in cases of the local industry in Chile applying an optimization model," Energy, Elsevier, vol. 300(C).
    2. Osama A. Marzouk, 2024. "Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan," Energies, MDPI, vol. 17(19), pages 1-31, September.
    3. Carlos Cacciuttolo & Martin Navarrete & Edison Atencio, 2024. "Renewable Wind Energy Implementation in South America: A Comprehensive Review and Sustainable Prospects," Sustainability, MDPI, vol. 16(14), pages 1-45, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    2. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    3. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Xavier Rixhon & Gauthier Limpens & Diederik Coppitters & Hervé Jeanmart & Francesco Contino, 2021. "The Role of Electrofuels under Uncertainties for the Belgian Energy Transition," Energies, MDPI, vol. 14(13), pages 1-23, July.
    5. Kristofor R. Brye & Niyi S. Omidire & Leah English & Ranjan Parajuli & Laszlo Kekedy-Nagy & Ruhi Sultana & Jennie Popp & Greg Thoma & Trenton L. Roberts & Lauren F. Greenlee, 2022. "Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    6. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    7. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Optimized integration of Hydrogen technologies in Island energy systems," Renewable Energy, Elsevier, vol. 174(C), pages 850-864.
    8. De Angelis, Paolo & Tuninetti, Marta & Bergamasco, Luca & Calianno, Luca & Asinari, Pietro & Laio, Francesco & Fasano, Matteo, 2021. "Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Junyang Ding & Wenxian Liu & Shusheng Zhang & Jun Luo & Xijun Liu, 2023. "A Mini Review: Recent Advances in Asymmetrically Coordinated Atom Sites for High-Efficiency Hydrogen Evolution Reaction," Energies, MDPI, vol. 16(6), pages 1-18, March.
    10. Katsaounis, Th. & Kotsovos, K. & Gereige, I. & Basaheeh, A. & Abdullah, M. & Khayat, A. & Al-Habshi, E. & Al-Saggaf, A. & Tzavaras, A.E., 2019. "Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1285-1298.
    11. Juhui Gim & Minsu Kim & Changsun Ahn, 2022. "Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-15, March.
    12. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    13. Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
    14. Aitor Marzo & Jesús Ballestrín & Joaquín Alonso-Montesinos & Pablo Ferrada & Jesús Polo & Gabriel López & Javier Barbero, 2021. "Field Quality Control of Spectral Solar Irradiance Measurements by Comparison with Broadband Measurements," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    15. Salmon, Aloïs & Marzo, Aitor & Polo, Jesús & Ballestrín, Jesús & Carra, Elena & Alonso-Montesinos, Joaquín, 2022. "World map of low-layer atmospheric extinction values for solar power tower plants projects," Renewable Energy, Elsevier, vol. 201(P1), pages 876-888.
    16. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    17. Eleonora Riva Sanseverino & Le Quyen Luu, 2022. "Critical Raw Materials and Supply Chain Disruption in the Energy Transition," Energies, MDPI, vol. 15(16), pages 1-5, August.
    18. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
    19. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    20. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4509-:d:1163465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.