IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4278-d1153831.html
   My bibliography  Save this article

Multi-Stage Bargaining of Smart Grid Energy Trading Based on Cooperative Game Theory

Author

Listed:
  • Nongmaithem Nandini Devi

    (Department of Computer Science and Engineering, National Institute of Technology Meghalaya, Shillong 793003, India
    These authors contributed equally to this work.)

  • Surmila Thokchom

    (Department of Computer Science and Engineering, National Institute of Technology Meghalaya, Shillong 793003, India
    These authors contributed equally to this work.)

  • Thoudam Doren Singh

    (Department of Computer Science and Engineering, National Institute of Technology Silchar, Silchar 788010, India
    These authors contributed equally to this work.)

  • Gayadhar Panda

    (Department of Electrical Engineering, National Institute of Technology Meghalaya, Shillong 793003, India
    These authors contributed equally to this work.)

  • Ramasamy Thaiyal Naayagi

    (School of Electrical and Electronic Engineering, Newcastle University in Singapore, Singapore 567739, Singapore)

Abstract

Due to global warming and climate change, it is essential to produce power using renewable sources, such as solar, wind, fuel cells, etc. The traditional grid shifts towards the smart grid by infusing digital communication techniques and information technology. As the current power system is shifting towards a smart grid, the utility and prosumers participate in the energy trading process. Due to the distributed nature of the smart grid, providing a fair price among them is becoming a difficult task. The article introduces a model for energy trading in a smart grid by allowing participants to negotiate in multiple stages using a game-theory-based multi-stage Nash Bargaining Solution (NBS). The model’s application of game theory enables the participants to decide on a mutually acceptable price, thereby encouraging the utility, private parties and prosumers (those who are able to generate and consume energy) to participate in the trading process. Since all parties participate in the trading procedure, greenhouse gas emissions are reduced. The proposed model also balances the benefits of consumers and producers in the final agreed fixed price. To demonstrate the efficacy of the proposed work, we compare the analytical results with feed-in-tariff (FiT) techniques in terms of consumers’ energy bills and producers’ revenue. For experimental analysis, 20 participants are considered, where the percentage reduction in the bill of each consumer and the percentage increment of revenue of each producer are compared to FiT. On average, the overall bill of the consumer is reduced by 32.8 % , and the producers’ revenue is increased by 64.83 % compared to FiT. It has been shown further that the proposed model shows better performance as compared to FiT with an increase in the number of participants. The analysis of carbon emission reduction in the proposed model has been analyzed, where, for 10 participants, the carbon emission reduction is approximately 28.48 kg/kWh, and for 100 participants is 342.397 kg/kWh.

Suggested Citation

  • Nongmaithem Nandini Devi & Surmila Thokchom & Thoudam Doren Singh & Gayadhar Panda & Ramasamy Thaiyal Naayagi, 2023. "Multi-Stage Bargaining of Smart Grid Energy Trading Based on Cooperative Game Theory," Energies, MDPI, vol. 16(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4278-:d:1153831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    2. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang He & Min Liu & Chaowen Zuo & Kai Wang, 2023. "Massive Multi-Source Joint Outbound and Benefit Distribution Model Based on Cooperative Game," Energies, MDPI, vol. 16(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    2. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    3. Cui, Shiting & Zhu, Ruijin & Wu, Jun, 2024. "A double layer energy cooperation framework for prosumer groups in high altitude areas," Renewable Energy, Elsevier, vol. 224(C).
    4. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    5. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    6. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    7. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    8. João Mello & Cristina de Lorenzo & Fco. Alberto Campos & José Villar, 2023. "Pricing and Simulating Energy Transactions in Energy Communities," Energies, MDPI, vol. 16(4), pages 1-22, February.
    9. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    10. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    12. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    13. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    14. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    15. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    16. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    17. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    18. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    19. Tarashandeh, Nader & Karimi, Ali, 2024. "Peer-to-peer energy trading under distribution network constraints with preserving independent nature of agents," Applied Energy, Elsevier, vol. 355(C).
    20. García-Muñoz, Fernando & Dávila, Sebastián & Quezada, Franco, 2023. "A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4278-:d:1153831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.