IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4246-d1152726.html
   My bibliography  Save this article

The Efficiency Improvement of the Device Based on the Example of a High Building Facade Washer in the Area of Industry 4.0

Author

Listed:
  • Witold Żołna

    (Proteco Machines Sp. z o.o., Marszałka Józefa Piłsudskiego 74/320, 50-020 Wrocław, Poland)

  • Przemysław Jura

    (Polish Chamber of Ecology, Warszawska 3, 40-009 Katowice, Poland)

  • Marian Banaś

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Krzysztof Szczotka

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

The publication analyzes aspects of energy efficiency of various types and several technological concepts of facade washing devices. The conducted analyses and tests answered the most essential question of this stage: which, from the technical point of view of solving the problem of stabilizing the track of the washing machine, gives the highest guarantee of effective stabilization of this track in unfavorable wind conditions. The literature analysis showed several solutions to the problem of track stabilization of facade washing machines on the market, of which suction cups stabilize the machine device, a system not attached to the wall of the building, and fans or propellers have been commercialized. However, it pointed out that there are no universal solutions. Detailed analysis of solutions under many criteria led to finding the solution with the fewest defects at this stage of analysis and potentially the greatest chance of success. Thanks to the results of work and research on the effectiveness of technology, it was possible to implement a number of solutions leading to the improvement of work efficiency, safety, and the development of Industry 4.0.

Suggested Citation

  • Witold Żołna & Przemysław Jura & Marian Banaś & Krzysztof Szczotka, 2023. "The Efficiency Improvement of the Device Based on the Example of a High Building Facade Washer in the Area of Industry 4.0," Energies, MDPI, vol. 16(10), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4246-:d:1152726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    2. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    2. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    3. Karim Mohamed Ragab & Mehmet Fatih Orhan & Kenan Saka & Yousef Zurigat, 2022. "A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
    4. Wichean Singmai & Kasemsil Onthong & Tongchana Thongtip, 2023. "Experimental Investigation of the Improvement Potential of a Heat Pump Equipped with a Two-Phase Ejector," Energies, MDPI, vol. 16(16), pages 1-19, August.
    5. Dariusz Bajno & Agnieszka Grzybowska & Łukasz Bednarz, 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-31, September.
    6. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    7. Ming-Qiang Huang & Rui-Juan Lin, 2022. "Evolutionary Game Analysis of Energy-Saving Renovations of Existing Rural Residential Buildings from the Perspective of Stakeholders," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    8. Krzysztof Szczotka & Anna Barwińska-Małajowicz & Jakub Szymiczek & Radosław Pyrek, 2023. "Thermomodernization as a Mechanism for Improving Energy Efficiency and Reducing Emissions of Pollutants into the Atmosphere in a Public Utility Building," Energies, MDPI, vol. 16(13), pages 1-24, June.
    9. Piotr Michalak, 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building," Energies, MDPI, vol. 14(18), pages 1-22, September.
    10. Marek Borowski, 2022. "Hotel Adapted to the Requirements of an nZEB Building—Thermal Energy Performance and Assessment of Energy Retrofit Plan," Energies, MDPI, vol. 15(17), pages 1-17, August.
    11. Robert Dylewski & Janusz Adamczyk, 2022. "Building Energy: Economics and Environment," Energies, MDPI, vol. 15(20), pages 1-2, October.
    12. Beata Sadowska & Joanna Piotrowska-Woroniak & Grzegorz Woroniak & Wiesław Sarosiek, 2022. "Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study," Energies, MDPI, vol. 15(8), pages 1-31, April.
    13. Anna Barwińska-Małajowicz & Radosław Pyrek & Krzysztof Szczotka & Jakub Szymiczek & Teresa Piecuch, 2023. "Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study," Energies, MDPI, vol. 16(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4246-:d:1152726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.