IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4150-d1149334.html
   My bibliography  Save this article

Developing a Simulation Model to Numerically Estimate Energy Parameters and Wave Energy Converter Efficiency of a Floating Wave Power Plant

Author

Listed:
  • Maxim Zhelonkin

    (Department of Technology and Equipment of Mechanical Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603155 Nizhny Novgorod, Russia)

  • Andrey Kurkin

    (Department of Applied Mathematics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603155 Nizhny Novgorod, Russia)

  • Alexey Loskutov

    (Department of Electric Power Engineering, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603155 Nizhny Novgorod, Russia)

  • Alexander Plekhov

    (Department of Electrical Equipment, Electric Drive and Automation, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603155 Nizhny Novgorod, Russia)

  • Dmitry Malyarov

    (Department of Electric Power Engineering, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603155 Nizhny Novgorod, Russia)

  • Evgeny Kryukov

    (Department of Electric Power Engineering, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603155 Nizhny Novgorod, Russia)

Abstract

The significance of coastal zone object protection using wave electrical energy complexes (WEECs) is dealt with. The authors suggest using a floating wave power plant (FWPP), which comprises electrical energy functions and provides coastal zone protection. Features of simulating FWPP in computational fluid dynamics (CFD) modules are considered. The main simulation stages, construction order, the necessary initial and boundary conditions, calculation objectives and results are described and analyzed. Analysis and adjustment of input parameters (wave amplitude, wave disturbance frequency, FWPP geometric parameters) determining the FWPP fluid flow output parameters (dynamic, total pressure, flow rate, flow velocity) were carried out. Calculation process optimization was carried out by comparing the data obtained using a 2-D solver. The main stages of wave disturbances-with-FWPP-structure interaction have been determined. Epures of flow velocity, pressure, flow path and volume flow rate were constructed and analyzed.

Suggested Citation

  • Maxim Zhelonkin & Andrey Kurkin & Alexey Loskutov & Alexander Plekhov & Dmitry Malyarov & Evgeny Kryukov, 2023. "Developing a Simulation Model to Numerically Estimate Energy Parameters and Wave Energy Converter Efficiency of a Floating Wave Power Plant," Energies, MDPI, vol. 16(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4150-:d:1149334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    2. Adamantia Zoi Vougioukli & Eleni Didaskalou & Dimitrios Georgakellos, 2017. "Financial Appraisal of Small Hydro-Power Considering the Cradle-to-Grave Environmental Cost: A Case from Greece," Energies, MDPI, vol. 10(4), pages 1-20, March.
    3. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    4. Beatriz Mayor & Ignacio Rodríguez-Muñoz & Fermín Villarroya & Esperanza Montero & Elena López-Gunn, 2017. "The Role of Large and Small Scale Hydropower for Energy and Water Security in the Spanish Duero Basin," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    5. Petras Punys & Antanas Dumbrauskas & Algis Kvaraciejus & Gitana Vyciene, 2011. "Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications," Energies, MDPI, vol. 4(9), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    2. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    3. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    4. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    5. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    6. Elham Hoominfar & Claudia Radel, 2020. "Contested Dam Development in Iran: A Case Study of the Exercise of State Power over Local People," Sustainability, MDPI, vol. 12(13), pages 1-19, July.
    7. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    8. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
    9. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    10. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Thiébaut, Maxime & Sentchev, Alexei, 2017. "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renewable Energy, Elsevier, vol. 105(C), pages 735-747.
    12. Lisboa, A.C. & Vieira, T.L. & Guedes, L.S.M. & Vieira, D.A.G. & Saldanha, R.R., 2017. "Optimal analytic dispatch for tidal energy generation," Renewable Energy, Elsevier, vol. 108(C), pages 371-379.
    13. Elham Hoominfar & Claudia Radel, 2023. "“Frankly, My Dear, I Don’t Want a Dam” in the US or in Iran: Environmental Movements and Shared Strategies in Differing Political Economies," Social Sciences, MDPI, vol. 12(3), pages 1-21, March.
    14. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    15. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    16. Kongyang Nhiakao & Helmut Yabar & Takeshi Mizunoya, 2022. "Cost-Benefit Analysis of the Nam Che 1 Hydropower Plant, Thathom District, Laos: An Ex-Post Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    17. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    18. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    19. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    20. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4150-:d:1149334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.