IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4056-d1145709.html
   My bibliography  Save this article

Machine Learning Algorithms for Identifying Dependencies in OT Protocols

Author

Listed:
  • Milosz Smolarczyk

    (Research & Development Department, Cryptomage LLC, St. Petersburg, FL 33702, USA)

  • Jakub Pawluk

    (Research & Development Department, Cryptomage SA, 50-556 Wrocław, Poland)

  • Alicja Kotyla

    (Research & Development Department, Cryptomage SA, 50-556 Wrocław, Poland)

  • Sebastian Plamowski

    (Institute of Control and Computation Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland)

  • Katarzyna Kaminska

    (Research & Development Department, Cryptomage SA, 50-556 Wrocław, Poland
    Institute of Telecommunications, Warsaw University of Technology, 00-661 Warsaw, Poland)

  • Krzysztof Szczypiorski

    (Research & Development Department, Cryptomage SA, 50-556 Wrocław, Poland
    Institute of Telecommunications, Warsaw University of Technology, 00-661 Warsaw, Poland)

Abstract

This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).

Suggested Citation

  • Milosz Smolarczyk & Jakub Pawluk & Alicja Kotyla & Sebastian Plamowski & Katarzyna Kaminska & Krzysztof Szczypiorski, 2023. "Machine Learning Algorithms for Identifying Dependencies in OT Protocols," Energies, MDPI, vol. 16(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4056-:d:1145709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milosz Smolarczyk & Sebastian Plamowski & Jakub Pawluk & Krzysztof Szczypiorski, 2022. "Anomaly Detection in Cyclic Communication in OT Protocols," Energies, MDPI, vol. 15(4), pages 1-20, February.
    2. Adrian Jędrzejczyk & Karol Firek & Janusz Rusek, 2022. "Convolutional Neural Network and Support Vector Machine for Prediction of Damage Intensity to Multi-Storey Prefabricated RC Buildings," Energies, MDPI, vol. 15(13), pages 1-16, June.
    3. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    4. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun, 2022. "Lithium-Ion Battery Health Prediction on Hybrid Vehicles Using Machine Learning Approach," Energies, MDPI, vol. 15(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaher Abusaq & Sadaf Zahoor & Muhammad Salman Habib & Mudassar Rehman & Jawad Mahmood & Mohammad Kanan & Ray Tahir Mushtaq, 2023. "Improving Energy Performance in Flexographic Printing Process through Lean and AI Techniques: A Case Study," Energies, MDPI, vol. 16(4), pages 1-15, February.
    2. Wojciech Szczepanik & Marcin Niemiec, 2022. "Heuristic Intrusion Detection Based on Traffic Flow Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Marcin Relich & Arkadiusz Gola & Małgorzata Jasiulewicz-Kaczmarek, 2022. "Identifying Improvement Opportunities in Product Design for Reducing Energy Consumption," Energies, MDPI, vol. 15(24), pages 1-19, December.
    4. Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    5. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    6. Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
    7. Taysa Millena Banik Marques & João Lucas Ferreira dos Santos & Diego Solak Castanho & Mariane Bigarelli Ferreira & Sergio L. Stevan & Carlos Henrique Illa Font & Thiago Antonini Alves & Cassiano Moro , 2023. "An Overview of Methods and Technologies for Estimating Battery State of Charge in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-18, June.
    8. Marwa Salah EIDin Fahmy & Farhan Ahmed & Farah Durani & Štefan Bojnec & Mona Mohamed Ghareeb, 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4056-:d:1145709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.