Convolutional Neural Network and Support Vector Machine for Prediction of Damage Intensity to Multi-Storey Prefabricated RC Buildings
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Leszek Chomacki & Janusz Rusek & Leszek Słowik, 2022. "Machine Learning Methods in Damage Prediction of Masonry Development Exposed to the Industrial Environment of Mines," Energies, MDPI, vol. 15(11), pages 1-23, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Milosz Smolarczyk & Jakub Pawluk & Alicja Kotyla & Sebastian Plamowski & Katarzyna Kaminska & Krzysztof Szczypiorski, 2023. "Machine Learning Algorithms for Identifying Dependencies in OT Protocols," Energies, MDPI, vol. 16(10), pages 1-24, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.
- Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
More about this item
Keywords
Convolutional Neural Network; Support Vector Machine; building damage; damage intensity; RC structures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4736-:d:850462. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.