An Overview of Real Gas Brayton Power Cycles: Working Fluids Selection and Thermodynamic Implications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
- Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
- Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
- Di Marcoberardino, G. & Morosini, E. & Manzolini, G., 2022. "Preliminary investigation of the influence of equations of state on the performance of CO2 + C6F6 as innovative working fluid in transcritical cycles," Energy, Elsevier, vol. 238(PB).
- Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Olga Zlyvko, 2021. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO 2 Recirculation," Energies, MDPI, vol. 14(10), pages 1-18, May.
- Costante Mario Invernizzi, 2017. "Prospects of Mixtures as Working Fluids in Real-Gas Brayton Cycles," Energies, MDPI, vol. 10(10), pages 1-15, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heo, Jin Young & Kim, Min Seok & Baik, Seungjoon & Bae, Seong Jun & Lee, Jeong Ik, 2017. "Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor," Applied Energy, Elsevier, vol. 206(C), pages 1118-1130.
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
- Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
- Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Lv, Fa & Liu, Shenghui, 2017. "Experimental research and theoretical analysis of flow instability in supercritical carbon dioxide natural circulation loop," Applied Energy, Elsevier, vol. 205(C), pages 813-821.
- Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
- Rodríguez-deArriba, Pablo & Crespi, Francesco & Sánchez, David & Muñoz, Antonio & Sánchez, Tomás, 2022. "The potential of transcritical cycles based on CO2 mixtures: An exergy-based analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1606-1628.
- Li, Hao & Li, Zhen & Lee, Sangkyoung & Lu, Yuanshen & Ju, Yaping & Zhang, Chuhua, 2024. "Supercritical carbon dioxide cycle thermodynamic and exergoeconomic improvements using a bidirectional coupling strategy," Energy, Elsevier, vol. 296(C).
- Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
- Yuhui Xiao & Yuan Zhou & Yuan Yuan & Yanping Huang & Gengyuan Tian, 2023. "Research Advances in the Application of the Supercritical CO 2 Brayton Cycle to Reactor Systems: A Review," Energies, MDPI, vol. 16(21), pages 1-23, October.
- Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Gillard, Jonathon & Patchigolla, Kumar, 2022. "Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application," Energy, Elsevier, vol. 238(PB).
- Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
- Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
- Feng, Jiaqi & Wang, Junpeng & Chen, Zhentao & Li, Yuzhe & Luo, Zhengyuan & Bai, Bofeng, 2024. "Performance advantages of transcritical CO2 cycle in the marine environment," Energy, Elsevier, vol. 305(C).
- Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
- Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
More about this item
Keywords
closed thermodynamic cycles; Brayton cycles; real gas effects; carbon dioxide cycles; organic working fluids; mixtures in Brayton cycles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3989-:d:1142761. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.