IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p448-d1021152.html
   My bibliography  Save this article

Yield and Bioenergy Quality of Maralfalfa Biomass Obtained at Different Plant Strata and Cutting Dates

Author

Listed:
  • Rigoberto Rosales-Serna

    (INIFAP—Campo Experimental Valle del Guadiana, Carretera Durango-El Mezquital km 4.5, Mexico City 34170, Mexico)

  • Julio César Ríos-Saucedo

    (INIFAP—Campo Experimental Valle del Guadiana, Carretera Durango-El Mezquital km 4.5, Mexico City 34170, Mexico)

  • Jhessica Abigail Martínez-Galindo

    (Facultad de Ciencias Forestales, Río Papaloapán y Blvd. Durango S/N, Col. Valle del Sur, Mexico City 34120, Mexico)

  • Artemio Carrillo-Parra

    (Instituto de Silvicultura e Industria de la Madera (ISIMA), Universidad Juárez del Estado de Durango, Boulevard del Guadiana Núm. 501, Ciudad Universitaria, Mexico City 34120, Mexico)

  • Saúl Santana-Espinoza

    (INIFAP—Campo Experimental Valle del Guadiana, Carretera Durango-El Mezquital km 4.5, Mexico City 34170, Mexico)

  • Rafael Jiménez-Ocampo

    (INIFAP—Campo Experimental Valle del Guadiana, Carretera Durango-El Mezquital km 4.5, Mexico City 34170, Mexico)

  • Pablo Alfredo Domínguez-Martínez

    (INIFAP—Campo Experimental Valle del Guadiana, Carretera Durango-El Mezquital km 4.5, Mexico City 34170, Mexico)

Abstract

One viable option for meeting global energy demand is the creation of biofuels from plant species that demonstrate high biomass productivity and good energy characteristics. In this study, growth was evaluated using plant height (PH), the production of green (GB) and dry biomass (DB), and the energy quality of leaves, pods, and stems, considering apical and basal sections of maralfalfa plants at 28, 60, 90, and 140 days after applying a uniformity cut (AUC). The variables were analyzed with correlation tests and variance analyses (ANOVA) using a factorial array design; in addition, Tukey tests were performed. A steady increase in PH (72 to 239 cm) was found. The highest yield of stems was at 90 AUC (41,362 kg/ha) for GB and 140 days AUC (6331 kg/ha) for DB, and a high correlation was observed between PH and stem biomass production for both the GB ( r = 0.91) and DB ( r = 0.93). There was a strong correlation between higher heating value and DB from the apical stratum ( r = 0.99) and the basal stratum ( r = 0.97). Maralfalfa shows high biomass productivity and high energy production in short growth periods.

Suggested Citation

  • Rigoberto Rosales-Serna & Julio César Ríos-Saucedo & Jhessica Abigail Martínez-Galindo & Artemio Carrillo-Parra & Saúl Santana-Espinoza & Rafael Jiménez-Ocampo & Pablo Alfredo Domínguez-Martínez, 2022. "Yield and Bioenergy Quality of Maralfalfa Biomass Obtained at Different Plant Strata and Cutting Dates," Energies, MDPI, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:448-:d:1021152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lajili, M. & Guizani, C. & Escudero Sanz, F.J. & Jeguirim, M., 2018. "Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues," Energy, Elsevier, vol. 150(C), pages 61-68.
    2. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    2. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    3. Małgorzata Wzorek & Robert Junga & Ersel Yilmaz & Bohdan Bozhenko, 2021. "Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    5. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    6. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    7. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    8. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    9. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    10. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    11. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    12. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    13. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    15. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    16. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    18. Hívila M. P. Marreiro & Rogério S. Peruchi & Riuzuani M. B. P. Lopes & Silvia L. F. Andersen & Sayonara A. Eliziário & Paulo Rotella Junior, 2021. "Empirical Studies on Biomass Briquette Production: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-40, December.
    19. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    20. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:448-:d:1021152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.