IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3403-d809990.html
   My bibliography  Save this article

A Reconfigurable Fault-Tolerant PV Inverter via Integrating HERIC and H5 Topologies

Author

Listed:
  • Hossein Khoun Jahan

    (Electrical and Computer Engineering Department, University of Tabriz, Tabriz 51666, Iran)

  • Nima Abdolmaleki

    (Electrical and Computer Engineering Department, Wayne State University, Detroit, MI 48202, USA)

  • Mohammad Ahmadpour

    (Electrical and Computer Engineering Department, University of Tabriz, Tabriz 51666, Iran)

  • Jianfei Chen

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Caisheng Wang

    (Electrical and Computer Engineering Department, Wayne State University, Detroit, MI 48202, USA)

  • Mehdi Abapour

    (Electrical and Computer Engineering Department, University of Tabriz, Tabriz 51666, Iran)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Solar energy is prevalent in many applications, therefore, the reliability of solar energy systems has become an important topic for research communities and industry. High reliability and fault-tolerant capability are particularly vital for the solar energy systems that are mission-critical and/or inaccessible to affordable maintenance. In order to enhance the reliability of a grid-tied PV system, a fault-tolerant Photovoltaic (PV) inverter, termed Integrated Fault-Tolerant PV Inverter (IFTPVI), is proposed in this paper. The IFTPVI is based on the Highly Efficient and Reliable Inverter Concept (HERIC) and H5 inverters that are both popular and commercialized transformerless inverters in grid-tied PV applications. The IFTPVI can tolerate both open-circuit (OC) and short-circuit (SC) faults while maintaining the same voltage and current levels. The system description, reliability analysis, simulation in Matlab/Simulink 2018, and experimental results are provided to verify the feasibility and viability of the proposed inverter topology.

Suggested Citation

  • Hossein Khoun Jahan & Nima Abdolmaleki & Mohammad Ahmadpour & Jianfei Chen & Caisheng Wang & Mehdi Abapour & Frede Blaabjerg, 2022. "A Reconfigurable Fault-Tolerant PV Inverter via Integrating HERIC and H5 Topologies," Energies, MDPI, vol. 15(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3403-:d:809990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamran Zeb & Imran Khan & Waqar Uddin & Muhammad Adil Khan & P. Sathishkumar & Tiago Davi Curi Busarello & Iftikhar Ahmad & H. J. Kim, 2018. "A Review on Recent Advances and Future Trends of Transformerless Inverter Structures for Single-Phase Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 11(8), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran Khan & Kamran Zeb & Waqar Ud Din & Saif Ul Islam & Muhammad Ishfaq & Sadam Hussain & Hee-Je Kim, 2019. "Dynamic Modeling and Robust Controllers Design for Doubly Fed Induction Generator-Based Wind Turbines under Unbalanced Grid Fault Conditions," Energies, MDPI, vol. 12(3), pages 1-23, January.
    2. Luigi Costanzo & Massimo Vitelli, 2019. "A Novel MPPT Technique for Single Stage Grid-Connected PV Systems: T4S," Energies, MDPI, vol. 12(23), pages 1-13, November.
    3. Denis Pelin & Matej Žnidarec & Damir Šljivac & Andrej Brandis, 2020. "Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies," Energies, MDPI, vol. 13(22), pages 1-17, November.
    4. Kamran Zeb & Tiago Davi Curi Busarello & Saif Ul Islam & Waqar Uddin & Kummara Venkata Guru Raghavendra & Muhammad Adil Khan & Hee-Je Kim, 2020. "Design of Super Twisting Sliding Mode Controller for a Three-Phase Grid-connected Photovoltaic System under Normal and Abnormal Conditions," Energies, MDPI, vol. 13(15), pages 1-21, July.
    5. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Azamat Mukhatov & Nguyen Gia Minh Thao & Ton Duc Do, 2022. "Linear Quadratic Regulator and Fuzzy Control for Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 15(4), pages 1-22, February.
    7. Moazzam Ali Rabbani & Muhammad Bilal Qureshi & Salman A. Al Qahtani & Muhammad Mohsin Khan & Pranavkumar Pathak, 2023. "Enhancing MPPT Performance in Partially Shaded PV Systems under Sensor Malfunctioning with Fuzzy Control," Energies, MDPI, vol. 16(12), pages 1-16, June.
    8. Muhammad Yasir Ali Khan & Haoming Liu & Zhihao Yang & Xiaoling Yuan, 2020. "A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies," Energies, MDPI, vol. 13(16), pages 1-40, August.
    9. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    10. Waqar Uddin & Kamran Zeb & Muhammad Adil Khan & Muhammad Ishfaq & Imran Khan & Saif ul Islam & Hee-Je Kim & Gwan Soo Park & Cheewoo Lee, 2019. "Control of Output and Circulating Current of Modular Multilevel Converter Using a Sliding Mode Approach," Energies, MDPI, vol. 12(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3403-:d:809990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.