Machine Learning for Prediction of Heat Pipe Effectiveness
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Zhangyuan & Zhao, Xudong & Han, Zhonghe & Luo, Liang & Xiang, Jinwei & Zheng, Senglin & Liu, Guangming & Yu, Min & Cui, Yu & Shittu, Samson & Hu, Menglong, 2021. "Advanced big-data/machine-learning techniques for optimization and performance enhancement of the heat pipe technology – A review and prospective study," Applied Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
- Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
- Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
- Chen, Hao & Zhang, Chao & Yu, Haizeng & Wang, Zhilin & Duncan, Ian & Zhou, Xianmin & Liu, Xiliang & Wang, Yu & Yang, Shenglai, 2022. "Application of machine learning to evaluating and remediating models for energy and environmental engineering," Applied Energy, Elsevier, vol. 320(C).
- Wang, Xianling & Yang, Jingxuan & Wen, Qiaowei & Shittu, Samson & Liu, Guangming & Qiu, Zining & Zhao, Xudong & Wang, Zhangyuan, 2022. "Visualization study of a flat confined loop heat pipe for electronic devices cooling," Applied Energy, Elsevier, vol. 322(C).
More about this item
Keywords
heat pipe; exchanger; machine learning; effectiveness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3276-:d:806076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.