IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3192-d803362.html
   My bibliography  Save this article

A Novel Adaptive Equivalence Fuel Consumption Minimisation Strategy for a Hybrid Electric Two-Wheeler

Author

Listed:
  • Naga Kavitha Kommuri

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • Andrew McGordon

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • Antony Allen

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

  • Dinh Quang Truong

    (Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK)

Abstract

One of the major challenges in implementing the equivalent fuel consumption minimisation strategy in hybrid electric vehicles is the adaptation of the equivalence factor to real-world driving. In this paper, a novel adaptive equivalent fuel consumption minimisation strategy (A-ECMS) has been developed for a hybrid two-wheeler to further improve fuel savings by predicting the drive cycles and thereby estimating and adapting the equivalence factor online for the ECMS energy management control. A learning vector quantitative neural network (LVQNN)-based classifier was first proposed to recognise the real-world driving cycle based on a fixed time window of past driving information. Along with standardised drive cycles, real-world driving data were used in the learning process to increase the robustness of the learning. The A-ECMS is then capable of regulating its equivalence factors online based on the LVQNN controller output. Numerical simulation results indicated that there was considerable improvement in fuel economy of the vehicle with the proposed methodology, up to 10.7%, compared to the use of traditional ECMS which was manually optimised for a single drive cycle. The average improvement in fuel economy over the ten drive cycles considered for testing is 3.93%.

Suggested Citation

  • Naga Kavitha Kommuri & Andrew McGordon & Antony Allen & Dinh Quang Truong, 2022. "A Novel Adaptive Equivalence Fuel Consumption Minimisation Strategy for a Hybrid Electric Two-Wheeler," Energies, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3192-:d:803362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tri, Nguyen Minh & Truong, Dinh Quang & Thinh, Do Hoang & Binh, Phan Cong & Dung, Dang Tri & Lee, Seyoung & Park, Hyung Gyu & Ahn, Kyoung Kwan, 2016. "A novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter," Renewable Energy, Elsevier, vol. 97(C), pages 518-531.
    2. Yuping Zeng & Yang Cai & Guiyue Kou & Wei Gao & Datong Qin, 2018. "Energy Management for Plug-In Hybrid Electric Vehicle Based on Adaptive Simplified-ECMS," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    3. Naga Kavitha Kommuri & Andrew McGordon & Antony Allen & Dinh Quang Truong, 2020. "Evaluation of a Modified Equivalent Fuel-Consumption Minimization Strategy Considering Engine Start Frequency and Battery Parameters for a Plugin Hybrid Two-Wheeler," Energies, MDPI, vol. 13(12), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueliang Li & Xinyu Kang & Xin Ba & Zengxiong Peng & Shujun Yang & Zhifu Zhao, 2022. "A Design Methodology for Dual-Mode Electro-Mechanical Transmission Scheme Based on Jointing Characteristics," Energies, MDPI, vol. 15(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    3. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    4. Hsiu-Ying Hwang & Tian-Syung Lan & Jia-Shiun Chen, 2020. "Optimization and Application for Hydraulic Electric Hybrid Vehicle," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    6. Naga Kavitha Kommuri & Andrew McGordon & Antony Allen & Dinh Quang Truong, 2020. "Evaluation of a Modified Equivalent Fuel-Consumption Minimization Strategy Considering Engine Start Frequency and Battery Parameters for a Plugin Hybrid Two-Wheeler," Energies, MDPI, vol. 13(12), pages 1-26, June.
    7. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    8. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
    9. Hsiu-Ying Hwang, 2020. "Developing Equivalent Consumption Minimization Strategy for Advanced Hybrid System-II Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-19, April.
    10. Giyeon Hwang & Kyungmin Lee & Jongmyung Kim & Kyu-Jin Lee & Sangyul Lee & Minjae Kim, 2020. "Energy Management Optimization of Series Hybrid Electric Bus Using an Ultra-Capacitor and Novel Efficiency Improvement Factors," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    11. Da Huo & Peter Meckl, 2022. "Power Management of a Plug-in Hybrid Electric Vehicle Using Neural Networks with Comparison to Other Approaches," Energies, MDPI, vol. 15(15), pages 1-19, August.
    12. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    13. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    14. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    15. Li, Weihan & Cui, Han & Nemeth, Thomas & Jansen, Jonathan & Ünlübayir, Cem & Wei, Zhongbao & Feng, Xuning & Han, Xuebing & Ouyang, Minggao & Dai, Haifeng & Wei, Xuezhe & Sauer, Dirk Uwe, 2021. "Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning," Applied Energy, Elsevier, vol. 293(C).
    16. Yangyang Ma & Pengyu Wang & Tianjun Sun, 2021. "Research on Energy Management Method of Plug-In Hybrid Electric Vehicle Based on Travel Characteristic Prediction," Energies, MDPI, vol. 14(19), pages 1-17, September.
    17. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    18. Zhou, Yujie & Huang, Yin & Mao, Xuping & Kang, Zehao & Huang, Xuejin & Xuan, Dongji, 2024. "Research on energy management strategy of fuel cell hybrid power via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 293(C).
    19. Chen, Zhihang & Liu, Yonggang & Zhang, Yuanjian & Lei, Zhenzhen & Chen, Zheng & Li, Guang, 2022. "A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 243(C).
    20. Liu, Yonggang & Wu, Yitao & Wang, Xiangyu & Li, Liang & Zhang, Yuanjian & Chen, Zheng, 2023. "Energy management for hybrid electric vehicles based on imitation reinforcement learning," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3192-:d:803362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.