IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3015-d798059.html
   My bibliography  Save this article

Effect of Reservoir Heterogeneity on CO 2 Flooding in Tight Oil Reservoirs

Author

Listed:
  • Jiashun Luo

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany)

  • Zhengmeng Hou

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany)

  • Guoqing Feng

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Jianxing Liao

    (College of Civil Engineering, Guizhou University, Guiyang 550025, China)

  • Muhammad Haris

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Department of Petroleum & Gas Engineering, University of Engineering & Technology, Lahore 54890, Pakistan)

  • Ying Xiong

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany)

Abstract

Carbon dioxide (CO 2 )-enhanced oil recovery (EOR) has great potential and opportunity for further development, and it is one of the vital carbon capture, utilization, and storage (CCUS) technologies. However, strong heterogeneity is one of the several challenges in developing reservoirs, especially for China’s continental tight oil reserves. This study investigates the effects of heterogeneous porosity and permeability on CO 2 flooding evolution in low-permeable tight formation. We simulated CO 2 -EOR using a numerical model developed on the platform of TOUGH2MP-TMVOC to evaluate the effect of different levels of heterogeneity on oil production, gas storage, and flow behaviors in a tight reservoir, controlled by standard deviation and correlation length. A comparison of nine cases reveals that porosity heterogeneity commonly intensifies flow channeling, and there is an oil production decline with higher standard deviation and longer correlation length of porosity field. In addition, the porosity correlation length has a negligible effect on reservoir performance when the standard deviation is relatively low. Furthermore, strong heterogeneity also has a negative impact on the storage capacity of CO 2 and oil production. Notably, as the standard deviation was raised to 0.1, a small sweep region arose with the early CO 2 breakthrough, which led to a worse flooding effect. Finally, this study exemplifies that a higher injection/production rate and CO 2 alternating N 2 injection strategies can improve oil recovery in highly heterogeneous reservoirs.

Suggested Citation

  • Jiashun Luo & Zhengmeng Hou & Guoqing Feng & Jianxing Liao & Muhammad Haris & Ying Xiong, 2022. "Effect of Reservoir Heterogeneity on CO 2 Flooding in Tight Oil Reservoirs," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3015-:d:798059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faisal Mehmood & Michael Z. Hou & Jianxing Liao & Muhammad Haris & Cheng Cao & Jiashun Luo, 2021. "Multiphase Multicomponent Numerical Modeling for Hydraulic Fracturing with N-Heptane for Efficient Stimulation in a Tight Gas Reservoir of Germany," Energies, MDPI, vol. 14(11), pages 1-26, May.
    2. Matteo Vitali & Cristina Zuliani & Francesco Corvaro & Barbara Marchetti & Alessandro Terenzi & Fabrizio Tallone, 2021. "Risks and Safety of CO 2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases," Energies, MDPI, vol. 14(15), pages 1-17, July.
    3. Muhammad Haris & Michael Z. Hou & Wentao Feng & Jiashun Luo & Muhammad Khurram Zahoor & Jianxing Liao, 2020. "Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems," Energies, MDPI, vol. 13(13), pages 1-21, July.
    4. Xiaomeng Cao & Yuan Gao & Jingwei Cui & Shuangbiao Han & Lei Kang & Sha Song & Chengshan Wang, 2020. "Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China," Energies, MDPI, vol. 13(8), pages 1-25, April.
    5. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Liang, Xi & Sun, Yan & Angus, Daniel, 2020. "China's carbon capture, utilization and storage (CCUS) policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Cheng Cao & Jianxing Liao & Zhengmeng Hou & Hongcheng Xu & Faisal Mehmood & Xuning Wu, 2020. "Utilization of CO 2 as Cushion Gas for Depleted Gas Reservoir Transformed Gas Storage Reservoir," Energies, MDPI, vol. 13(3), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengmeng Hou & Jiashun Luo & Yachen Xie & Lin Wu & Liangchao Huang & Ying Xiong, 2022. "Carbon Circular Utilization and Partially Geological Sequestration: Potentialities, Challenges, and Trends," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Caiyun & Ni, Hongjian & Shi, Xian, 2022. "Unsteady model for wellbore pressure transmission of carbon dioxide fracturing considering limited-flow outlet," Energy, Elsevier, vol. 239(PE).
    2. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    3. Haris, Muhammad & Hou, Michael Z. & Feng, Wentao & Mehmood, Faisal & Saleem, Ammar bin, 2022. "A regenerative Enhanced Geothermal System for heat and electricity production as well as energy storage," Renewable Energy, Elsevier, vol. 197(C), pages 342-358.
    4. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    5. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    6. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Yi Shu & Yanran Xu & Shu Jiang & Linhao Zhang & Xiang Zhao & Zhejun Pan & Tomasz P. Blach & Liangwei Sun & Liangfei Bai & Qinhong Hu & Mengdi Sun, 2020. "Effect of Particle Size on Pore Characteristics of Organic-Rich Shales: Investigations from Small-Angle Neutron Scattering (SANS) and Fluid Intrusion Techniques," Energies, MDPI, vol. 13(22), pages 1-23, November.
    8. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Weizhu Zeng & Zhiguang Song, 2022. "Influences of Clay Mineral and Organic Matter on Nanoscale Pore Structures of the Cretaceous Lacustrine Shales in the Songliao Basin, Northeast China," Energies, MDPI, vol. 15(19), pages 1-16, September.
    10. Seok-ho Jung & Seong-ho Lee & Jihee Min & Mee-hye Lee & Ji Whan Ahn, 2020. "Analysis of the State of the Art of International Policies and Projects on CCU for Climate Change Mitigation with a Focus on the Cases in Korea," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    11. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    12. Huang, Xiaohong & Hu, Fan & Liu, Xuhui & Liu, Zhaohui, 2022. "Structure and reactivity of chars prepared from low-volatile coal under O2/N2 and O2/CO2 conditions in a flat-flame assisted entrained flow reactor," Energy, Elsevier, vol. 261(PB).
    13. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    14. Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
    15. Ivica Pavičić & Zlatko Briševac & Anja Vrbaški & Tonći Grgasović & Željko Duić & Deni Šijak & Ivan Dragičević, 2021. "Geometric and Fractal Characterization of Pore Systems in the Upper Triassic Dolomites Based on Image Processing Techniques (Example from Žumberak Mts, NW Croatia)," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    16. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    17. Pål Østebø Andersen & Ketil Djurhuus & Reza Askarinezhad & Jonas S. Solbakken, 2022. "Management of High-Water-Cut and Mature Petroleum Reservoirs," Energies, MDPI, vol. 15(22), pages 1-4, November.
    18. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    19. Enbin Liu & Xudong Lu & Daocheng Wang, 2023. "A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges," Energies, MDPI, vol. 16(6), pages 1-48, March.
    20. Qianjun Chen & Zhengmeng Hou & Xuning Wu & Shengyou Zhang & Wei Sun & Yanli Fang & Lin Wu & Liangchao Huang & Tian Zhang, 2023. "A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3015-:d:798059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.