IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2898-d794490.html
   My bibliography  Save this article

An End-to-End Deep Learning Method for Voltage Sag Classification

Author

Listed:
  • Radovan Turović

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

  • Dinu Dragan

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

  • Gorana Gojić

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

  • Veljko B. Petrović

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

  • Dušan B. Gajić

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

  • Aleksandar M. Stanisavljević

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

  • Vladimir A. Katić

    (Faculty of Technical Sciences, University of Novi Sad, 21460 Novi Sad, Serbia)

Abstract

Power quality disturbances (PQD) have a negative impact on power quality-sensitive equipment, often resulting in great financial losses. To prevent these losses, besides detecting a PQD on time, it is important to classify it, so that appropriate recovery procedures are employed. The majority of research employs machine learning model PQD classifiers on manually extracted features from simulated or real-world signals. This paper presents an end-to-end approach that circumvents the manual feature extraction and uses signals generated from mathematical voltage sag type formulas. We developed a configurable voltage sag generator that was used to form training and validation datasets. Based on the synthetic three-phase voltage signals, we trained several end-to-end LSTM classifiers that classify voltage sags according to ABC classification. The best-performing model achieved an accuracy of over 90% in the real-world dataset.

Suggested Citation

  • Radovan Turović & Dinu Dragan & Gorana Gojić & Veljko B. Petrović & Dušan B. Gajić & Aleksandar M. Stanisavljević & Vladimir A. Katić, 2022. "An End-to-End Deep Learning Method for Voltage Sag Classification," Energies, MDPI, vol. 15(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2898-:d:794490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    2. Haoyuan Sha & Fei Mei & Chenyu Zhang & Yi Pan & Jianyong Zheng, 2019. "Identification Method for Voltage Sags Based on K-means-Singular Value Decomposition and Least Squares Support Vector Machine," Energies, MDPI, vol. 12(6), pages 1-15, March.
    3. Khokhar, Suhail & Mohd Zin, Abdullah Asuhaimi B. & Mokhtar, Ahmad Safawi B. & Pesaran, Mahmoud, 2015. "A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1650-1663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunus Yalman & Tayfun Uyanık & Adnan Tan & Kamil Çağatay Bayındır & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Implementation of Voltage Sag Relative Location and Fault Type Identification Algorithm Using Real-Time Distribution System Data," Mathematics, MDPI, vol. 10(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    4. Enrique Reyes-Archundia & Wuqiang Yang & Jose A. Gutiérrez Gnecchi & Javier Rodríguez-Herrejón & Juan C. Olivares-Rojas & Aldo V. Rico-Medina, 2024. "Effect of Phase Shifting on Real-Time Detection and Classification of Power Quality Disturbances," Energies, MDPI, vol. 17(10), pages 1-14, May.
    5. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    6. Azam Bagheri & Roger Alves de Oliveira & Math H. J. Bollen & Irene Y. H. Gu, 2022. "A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances," Energies, MDPI, vol. 15(4), pages 1-14, February.
    7. Mario Šipoš & Zvonimir Klaić & Emmanuel Karlo Nyarko & Krešimir Fekete, 2021. "Determining the Optimal Location and Number of Voltage Dip Monitoring Devices Using the Binary Bat Algorithm," Energies, MDPI, vol. 14(1), pages 1-13, January.
    8. Md Shafiullah & M. A. Abido & Taher Abdel-Fattah, 2018. "Distribution Grids Fault Location employing ST based Optimized Machine Learning Approach," Energies, MDPI, vol. 11(9), pages 1-23, September.
    9. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    10. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    11. Yassine Amirat & Zakarya Oubrahim & Hafiz Ahmed & Mohamed Benbouzid & Tianzhen Wang, 2020. "Phasor Estimation for Grid Power Monitoring: Least Square vs. Linear Kalman Filter," Energies, MDPI, vol. 13(10), pages 1-15, May.
    12. Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    14. Matej Žnidarec & Zvonimir Klaić & Damir Šljivac & Boris Dumnić, 2019. "Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network," Energies, MDPI, vol. 12(5), pages 1-19, February.
    15. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    16. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    17. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Zhang, Liangheng & Jiang, Congmei & Pang, Aiping & He, Yu, 2024. "Super-efficient detector and defense method for adversarial attacks in power quality classification," Applied Energy, Elsevier, vol. 361(C).
    19. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    20. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2898-:d:794490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.