Wind Speed Forecasting Using Attention-Based Causal Convolutional Network and Wind Energy Conversion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
- Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
- Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
- Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
- Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
- José A. Domínguez-Navarro & Tania B. Lopez-Garcia & Sandra Minerva Valdivia-Bautista, 2021. "Applying Wavelet Filters in Wind Forecasting Methods," Energies, MDPI, vol. 14(11), pages 1-22, May.
- Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
- R. J. Barthelmie & S. C. Pryor, 2014. "Potential contribution of wind energy to climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 684-688, August.
- Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
- Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
- Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
- Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
- Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
- Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast," Renewable Energy, Elsevier, vol. 164(C), pages 1508-1526.
- Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
- Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
- Aly, Hamed H.H., 2020. "A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting," Energy, Elsevier, vol. 213(C).
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Long & Huang, Ling & Shi, Huifeng, 2023. "A novel spatial–temporal generative autoencoder for wind speed uncertainty forecasting," Energy, Elsevier, vol. 282(C).
- Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
- Longnv Huang & Qingyuan Wang & Jiehui Huang & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Novel Hybrid Predictive Model for Ultra-Short-Term Wind Speed Prediction," Energies, MDPI, vol. 15(13), pages 1-17, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
- Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
- Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
- Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
- Longnv Huang & Qingyuan Wang & Jiehui Huang & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Novel Hybrid Predictive Model for Ultra-Short-Term Wind Speed Prediction," Energies, MDPI, vol. 15(13), pages 1-17, July.
- Ke Zhang & Xiao Li & Jie Su, 2022. "Variable Support Segment-Based Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 15(11), pages 1-18, June.
- Li, Yanhui & Sun, Kaixuan & Yao, Qi & Wang, Lin, 2024. "A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm," Energy, Elsevier, vol. 286(C).
- Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
- Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
- Ai, Chunyu & He, Shan & Hu, Heng & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
More about this item
Keywords
attention mechanism; causal convolutional network; wind speed forecasting; singular spectrum analysis; wind energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2881-:d:794030. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.