IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2855-d793339.html
   My bibliography  Save this article

Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation

Author

Listed:
  • Taiki Kure

    (Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan)

  • Haruka Danil Tsuchiya

    (Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan)

  • Yusuke Kameda

    (Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan)

  • Hiroki Yamamoto

    (Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan)

  • Daisuke Kodaira

    (Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan)

  • Junji Kondoh

    (Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan)

Abstract

The power-generation capacity of grid-connected photovoltaic (PV) power systems is increasing. As output power forecasting is required by electricity market participants and utility operators for the stable operation of power systems, several methods have been proposed using physical and statistical approaches for various time ranges. A short-term (30 min ahead) forecasting method had been proposed previously for multiple PV systems using motion estimation. This method forecasts the short time ahead PV power generation by estimating the motion between two geographical images of the distributed PV power systems. In this method, the parameter λ , which relates the smoothness of the resulting motion vector field and affects the accuracy of the forecasting, is important. This study focuses on the parameter λ and evaluates the effect of changing this parameter on forecasting accuracy. In the periods with drastic power output changes, the forecasting was conducted on 101 PV systems. The results indicate that the absolute mean error of the proposed method with the best parameter is 10.3%, whereas that of the persistence forecasting method is 23.7%. Therefore, the proposed method is effective in forecasting periods when PV output changes drastically within a short time interval.

Suggested Citation

  • Taiki Kure & Haruka Danil Tsuchiya & Yusuke Kameda & Hiroki Yamamoto & Daisuke Kodaira & Junji Kondoh, 2022. "Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation," Energies, MDPI, vol. 15(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2855-:d:793339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    3. Yosui Miyazaki & Yusuke Kameda & Junji Kondoh, 2019. "A Power-Forecasting Method for Geographically Distributed PV Power Systems using Their Previous Datasets," Energies, MDPI, vol. 12(24), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daisuke Kodaira & Kazuki Tsukazaki & Taiki Kure & Junji Kondoh, 2021. "Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations," Energies, MDPI, vol. 14(21), pages 1-15, November.
    2. Hiroki Yamamoto & Junji Kondoh & Daisuke Kodaira, 2022. "Assessing the Impact of Features on Probabilistic Modeling of Photovoltaic Power Generation," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    5. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    6. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    7. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    8. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    9. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    10. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    11. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    12. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    13. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    14. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    15. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    16. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    17. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    18. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    19. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    20. Alen Jakoplić & Dubravko Franković & Juraj Havelka & Hrvoje Bulat, 2023. "Short-Term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning," Energies, MDPI, vol. 16(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2855-:d:793339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.